4 research outputs found

    Local and Regional Landscape Characteristics Driving Habitat Selection by Greater Sage-Grouse Along a Fragmented Range Margin

    Get PDF
    In response to ongoing landscape change, wildlife species are likely to respond in varied ways. By studying habitat specialists, we are able to better understand the most likely ways in which the denizens of threatened ecosystems will react to those changes. Among the most threatened ecosystem types in North America are sagebrush ecosystems of the Intermountain West, where one of its most well-known residents, greater sage grouse (hereafter, ā€œsage-grouse), have lost more than 50% of their habitat due to fire, invasive species, climate change, encroachment by coniferous forests and avian predators using it, and human-caused landscape conversion. Sage-grouse rely on sagebrush throughout their lives, and there are ongoing efforts to protect them as emblems of vulnerable species and to preserve a changing landscape. The purpose of my dissertation, as part of the ongoing efforts, was to improve understanding of how sage-grouse select habitat along their southern distribution edge in southern Utah and Nevada, where habitat tends to be fragmented and of poorer quality. In this research, I used more than six years of location data from GPS transmitters on sage-grouse across four study areas to address how sage-grouse respond to the threats they face and by what means of data analysis we are best able to detect those threats and inform effective conservation. My research shows that, despite the risk posed by avian predators, sage-grouse in these study areas select habitat closer to trees than expected and do so when they are likely able to also use dense sagebrush cover and a rugged landscape to be concealed from predators. I also found that sage-grouse may use habitat near to trees for shade and escape from extreme heat and cold when the sagebrush in their habitat is not enough to provide shelter, suggesting that sage-grouse must often make risky decisions to balance the many threats they face. Finally, I found that random forests, an intuitive machine learning method, are able to detect important effects of sagebrush and tree cover on habitat selection, able to predict those effects in new areas, and should be considered among the useful and important tools for measuring wildlife-habitat associations

    Ecological Consequences of Anomalies in Atmospheric Moisture and Snowpack

    Get PDF
    Although increased frequency of extremeā€weather events is one of the most secure predictions associated with contemporary climate change, effects of such events on distribution and abundance of climateā€sensitive species remain poorly understood. Montane ecosystems may be especially sensitive to extreme weather because of complex abiotic and biotic interactions that propagate from climateā€driven reductions in snowpack. Snowpack not only protects subnivean biotas from extreme cold, but also influences forage availability through timing of meltā€off and water availability. We related relative abundances of an alpine mammal, the American pika (Ochotona princeps), to measures of weather and snowpack dynamics over an 8ā€yr period that included before and after a year of recordā€low snowpack in Washington, USA. We sought to (1) quantify any change in pika abundance associated with the snowpack anomaly and (2) identify aspects of weather and snowpack that influenced abundance of pikas. Pikas showed a 1ā€yr lag response to the snowpack anomaly and exhibited marked declines in abundance at elevations below 1,400 m simultaneous with increased abundances at higher elevations. Atmospheric moisture, indexed by vapor pressure deficit (VPD), was especially important, evidenced by strong support for the topā€ranked model that included the interaction of VPD with snowpack duration. Notably, our novel application of VPD from gridded climate data for analyses of animal abundances shows strong potential for improving species distribution models because VPD represents an important aspect of weather that influences the physiology and habitat of biota. Pikas were apparently affected by cold stress without snowpack at mid elevations, whereas changes to forage associated with snowpack and VPD were influential at high and low elevations. Our results reveal context dependency in pika responses to weather and illustrate how snow drought can lead to rapid change in the abundance of subnivean animals

    Greater sageā€grouse habitat selection varies across the marginal habitat of its lagging range margin

    No full text
    Abstract Studying wildlifeā€“habitat relationships at the edges of their range can provide valuable insights into the environmental factors limiting wildlife distributions and most likely to drive extirpations and range shifts in response to landscape change. Yet the relative impact of those factors is likely different along the range margin, so it is important to identify the limitations to suitable habitat at both regional and local scales. Some of the most drastic impacts of largeā€scale landscape changes in North America have occurred and are forecasted in the sagebrush steppe ecosystems, where species unable to seek new habitat in the fragmented landscape will be vulnerable to climatic extremes, vegetation community shifts, and anthropogenic land use change. One of the species likely under major threat from landscape changes is the greater sageā€grouse (Centrocercus urophasianus), a sagebrush obligate with habitat constraints that make it susceptible to habitat loss impacts as sagebrush systems contract and fragment at their southern range margin, already naturally fragmented. In this study, we evaluated factors of topography and land cover directly impacting habitat selection by sageā€grouse in four study areas along their lagging range edge. We used >116,000 GPS locations from >90 grouse across four study areas in southern Utah and Nevada from 2014 to 2020 in habitat selection analyses using random forest models. Our results showed that sageā€grouse exploit topography and sagebrush cover, possibly to break predator sight lines and moderate the risk posed by avian predators using tree perches, complicating the effects of tree cover and conifer encroachment into sagebrush habitat. We found similar trends across all four study areas, suggesting sageā€grouse along the southern range margin face similar limitations. However, the effects were nonlinear and variedā€”models trained in one study area were only moderately successful at predicting selection in others. The local idiosyncrasies along this southern range margin indicate a need for placeā€based conservation for sageā€grouse and other potentially imperiled species. Incorporating new understandings of local impacts will refine regional and rangeā€wide models and support efforts to effectively create habitat and plan for range shifts by vulnerable species in response to environmental change
    corecore