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ABSTRACT 

Local and Regional Landscape Characteristics Driving Habitat Selection by Greater 

Sage-Grouse Along a Fragmented Range Margin 

by 

Aidan T. Beers, Doctor of Philosophy 

Utah State University, 2022 

Major professor: S. Nicki Frey, Ph.D. 
Department: Wildland Resources 

Wildlife habitat selection analysis provides insight into some of the mechanisms 

limiting wildlife habitat at multiple scales and provides the means to effectively plan for 

wildlife conservation and management. This may be most important at range edges, 

where habitat tends to be of poorer quality and the factors limiting habitat suitability can 

be most apparent. In North America, sagebrush (Artemisia sp.) ecosystems and their 

denizens are among the systems most threatened by landscape changes. Among their 

residents are greater sage-grouse (Centrocercus urophasianus), sagebrush obligates that 

relies on intact sagebrush and face widespread threats to their persistence. The purpose of 

my research was to evaluate greater sage-grouse habitat selection along the southern edge 

of their distribution and the limitations to it in order to inform adaptive management at 

local and regional scales. In Chapter 2, I found that, despite the known risk of 

depredation due to tree cover, sage-grouse select habitat near trees, likely when they are 

able to exploit dense sagebrush and moderately rugged topography as visual cover from 
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avian predators. In Chapter 3, I found that sage-grouse may be forced to balance the risks 

of depredation and exposure to thermal extremes, as they were most likely to select 

habitat near trees in the hottest areas of the landscape. I found that there is likely a 

threshold of temperature above which, if sagebrush provides inadequate thermal cover, 

sage-grouse may use the shade of tree cover to escape thermal stress. In Chapter 4, I 

evaluated the descriptive and predictive performance of random forest (RF) models and 

conventional resource selection functions (RSFs) for habitat selection. I found that RF 

consistently outperformed RSF in predicting new data, including across study areas, and 

revealed nonlinear effects and interactions undetected by RSFs. My research highlights 

the need for place-based sage-grouse and habitat management. My findings also 

demonstrate complications to our understanding of the threats they face, the factors 

limiting their habitat, and the best means by which to analyze habitat selection data. 

(232 pages) 
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PUBLIC ABSTRACT 
 
 

Local and Regional Landscape Characteristics Driving Habitat Selection by Greater 

Sage-Grouse Along a Fragmented Range Margin 

Aidan T. Beers 
 
 

In response to ongoing landscape change, wildlife species are likely to respond in 

varied ways. By studying habitat specialists, we are able to better understand the most 

likely ways in which the denizens of threatened ecosystems will react to those changes. 

Among the most threatened ecosystem types in North America are sagebrush ecosystems 

of the Intermountain West, where one of its most well-known residents, greater sage-

grouse (hereafter, “sage-grouse), have lost more than 50% of their habitat due to fire, 

invasive species, climate change, encroachment by coniferous forests and avian predators 

using it, and human-caused landscape conversion. Sage-grouse rely on sagebrush 

throughout their lives, and there are ongoing efforts to protect them as emblems of 

vulnerable species and to preserve a changing landscape. The purpose of my dissertation, 

as part of the ongoing efforts, was to improve understanding of how sage-grouse select 

habitat along their southern distribution edge in southern Utah and Nevada, where habitat 

tends to be fragmented and of poorer quality. In this research, I used more than six years 

of location data from GPS transmitters on sage-grouse across four study areas to address 

how sage-grouse respond to the threats they face and by what means of data analysis we 

are best able to detect those threats and inform effective conservation. My research shows 

that, despite the risk posed by avian predators, sage-grouse in these study areas select 

habitat closer to trees than expected and do so when they are likely able to also use dense 
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sagebrush cover and a rugged landscape to be concealed from predators. I also found that 

sage-grouse may use habitat near to trees for shade and escape from extreme heat and 

cold when the sagebrush in their habitat is not enough to provide shelter, suggesting that 

sage-grouse must often make risky decisions to balance the many threats they face. 

Finally, I found that random forests, an intuitive machine learning method, are able to 

detect important effects of sagebrush and tree cover on habitat selection, able to predict 

those effects in new areas, and should be considered among the useful and important 

tools for measuring wildlife-habitat associations. 
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CHAPTER I 

INTRODUCTION 

DISTRIBUTIONS AND SCALE 

 Species distributions are delimited by the interaction of climate, topography, and 

interspecific relationships. Anthropogenic climate change is already impacting that 

interaction, changing ecosystems and driving impacts on species distributions (Walther et 

al. 2002a, Thomas et al. 2004b, 2006, Rull 2009, Chen et al. 2011b, Pecl et al. 2017, 

Bonebrake et al. 2018). Our ability to adapt to or manage these impacts will rely on our 

ability to understand and predict them. But there are significant gaps in our knowledge of 

species range shifts in response to climate change. These gaps include our ability to 

predict different rates of change that vary with topography and climate at multiple scales. 

Our lack of clarity around the potential responses is due in part to the uncertain role of 

microrefugia and behavioral plasticity across various scales (Mosblech et al. 2011, 

Ashcroft et al. 2012, Hannah et al. 2014, McCain and King 2014, McCain et al. 2016).  

At local scales, it is difficult to predict climatic extremes and overall rates of 

change (Ashcroft et al. 2009, Ashcroft 2010, Hannah et al. 2014). This makes it doubly 

difficult to anticipate local and regional effects of climate change and to predict species 

redistributions or identify existing microhabitats (Crimmins et al. 2011, Hannah et al. 

2014, McCain et al. 2016, Pecl et al. 2017). In order to address that issue, there is already 

useful research on the factors driving variability in topoclimate, the interaction between 

climate and topography that drives local-scale climatic conditions (Dobrowski 2011, 

Ashcroft and Gollan 2012, Ashcroft et al. 2012, Gollan et al. 2015, Morelli et al. 2016, 

Oyler et al. 2016). In addition to further refining our understanding of topoclimate, at 
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what scales it can impact species, and where it may foster microrefugia, further research 

must address how land cover interacts with the impacts of thermal stress at local scales. 

There are likely many areas where a vulnerable wildlife may persist by exploiting 

suitable microhabitats through their behavior despite conditions becoming less suitable 

overall (Jeffress et al. 2013, Beever et al. 2017). Microrefugia are difficult to predict, but 

Pleistocene refugia played a strong role in shaping some modern distributions and current 

microrefugia are likely to play a similarly important role in species redistribution 

(Holderegger and Thiel-Egenter 2009, Mosblech et al. 2011, Ashcroft et al. 2012, 

Hannah et al. 2014). By identifying the environmental features driving species 

distribution and habitat selection at local scales, we are more able to predict and plan for 

changes in habitat configuration and connectivity. 

Among the species vulnerable to these effects of landscape change at multiple 

scales across the western United States is the greater sage-grouse (Centrocercus 

urophasianus; hereafter ‘sage-grouse’), a ground dwelling bird and a habitat specialist, 

dependent on the sagebrush of western North America (Connelly et al. 2004, Schroeder 

et al. 2004, Knick and Connelly 2011, USFWS 2013) that may be an indicator or 

“umbrella” species for sagebrush ecosystems (Hanser and Knick 2011, Copeland et al. 

2014, Smith et al. 2019b, but see Carlisle et al. 2018). Despite being habitat specialists, 

sage-grouse demonstrate some plasticity in their habitat selection depending on their 

place within their distribution (Fedy et al. 2014, Doherty et al. 2016). This suggests that 

despite known threats, there are still cryptic idiosyncrasies in sage-grouse habitat 

selection at multiple scales, complicating our understanding of their habitat requirements 
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in different areas of their distribution and of their likely response to ongoing change at 

regional and local scales. 

 
SPECIES RANGE MARGINS 

 Delineating species ranges and their limitations is a central question in ecology 

with critical implications for conservation and management at species and ecosystem 

scales, spanning both basic and applied ecology. Species ranges are driven by both 

evolutionary and ecological factors, as their lineage, adaptive capacity, and climatic 

limitations interact with those of other species. Each species has evolved a fundamental 

niche, but its ability to fill that niche is limited by both the gradient of suitability within 

the niche and its competition with or reliance on other species.  

 At the simplest level, the fundamental niche is a product of evolution, established 

by a species’ evolutionary history and its existing adaptive capacity (Bridle and Vines 

2006). That includes the ability of a species to respond quickly to change, which is more 

likely to occur rapidly along distribution margins (Kirkpatrick and Barton 1997, Sexton 

et al. 2009). Populations at species’ distribution edges are often more genetically isolated 

and have greater variability in individual and population level success than core 

populations, which can leave them more vulnerable to the impacts of rapid change and 

biological invasions (Hampe and Petit 2005, Sexton et al. 2009, Hannah et al. 2014). That 

variability and vulnerability could also lead to lower population density (Moilanen et al. 

1998, Stewart et al. 2015). 

 The processes limiting species distributions are complicated by the mobility of 

wildlife and the varying capacity of species to shift their range in response to changing 

conditions at a variety of biologically relevant scales. For example, while the American 
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pika (Ochotona princeps) is a habitat specialist that has been forced into increasingly 

high elevation, patchy, and isolated habitat by a changing climate (Beever et al. 2003, 

Grayson 2005, Wilkening et al. 2011), it is unclear to what extent and where they can 

exploit suitable microhabitat, as they persist in hot, dry sites like Craters of the Moon 

National Monument and below 1000 ft of elevation in the Columbia River Gorge 

(Simpson 2009, Rodhouse et al. 2010, Smith et al. 2019a). Consequently, new research 

has focused on the role that local processes have in shaping pika range and how it will 

respond to climate change depending on local context (Schwalm et al. 2016, Johnston et 

al. 2019, Smith et al. 2019a). Understanding that local context is especially important for 

wildlife at their range margins, where habitat tends to be of poorer quality, leaving 

populations less dense and more vulnerable to the effects of environmental and 

demographic stochasticity (Seabrook et al. 2014, Ruprecht et al. 2016). In almost all 

cases, a species’ core distribution is where they are most suited to the climate and have 

the most positive and stable population increase; at the margins, there are more cases in 

which climatic variability can become limiting, habitat is more fragmented, and 

individuals are less able to find suitable refuge (Travis et al. 2004, Guo et al. 2005, 

Merrick and Koprowski 2017). There, they may have to rely on topoclimatic 

microrefugia, areas where local topography creates more stable conditions decoupled 

from regional trends or extreme weather (Thornthwaite 1953, Anderson et al. 2009, Rull 

2010, Dobrowski 2011, Ashcroft et al. 2012).  

The need to understand regional variation in habitat suitability is critical for 

conservation, including in greater sage-grouse (Centrocercus urophasianus). Doherty et 

al. (2016) demonstrated that habitat suitability and a species’ fundamental niche must be 
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understood hierarchically, from range-wide to regional to local scales. Additionally, other 

studies demonstrate biotic controls on the realized niche that are independent of climatic 

factors (Pearman et al. 2007, Jeffress et al. 2013, Schwalm et al. 2016). Nearing a range 

margin, species are more likely to be limited by competition with other species whose 

fundamental niche overlaps and may be more fit to that region. (Guo et al. 2005, 

Kaarlejarvi and Olofsson 2014). Poorer habitat quality and more vulnerable populations 

are evident near the edges of sage-grouse distribution. There, sagebrush gives way to 

other cover types, what suitable habitat exists is patchy, and sage-grouse are likely more 

vulnerable to extirpation (Herman-Brunson et al. 2009, Swanson et al. 2013, Rice et al. 

2016, Walker et al. 2016, Lazenby et al. 2021). This has borne out in sage-grouse 

population trends—while populations have declined across their range, the trend has been 

most dire in areas near the edge of their distribution (Aldridge et al. 2008, Coates et al. 

2021). 

 
SPECIES DISTRIBUTION AND HABITAT SELECTION MODELS 

 The difference between fundamental and realized niches is demonstrated well by 

examining species distribution models (SDMs). SDMs can be a powerful tool for 

modeling species distributions and predicting changes over time (Pacifici et al. 2015). 

They can include both biotic and abiotic factors, but are often built with presence-only 

data to describe a species’ bioclimatic envelope (Gomes et al. 2018). Using this presence-

only data and macroecological variables is akin to mapping a species’ fundamental niche, 

though usually will not cover it entirely because of the factors discussed above that would 

preclude presence data from its entire niche. However, SDMs tend to fail when they 

aren’t validated with out-of-sample data and are less accurate at range margins (Capinha 
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and Pateiro-López 2014, Vale et al. 2014). Where they ‘break down’ (i.e., exhibit a poor 

fit to the data) suggests limitations to the species’ ability to occupy that space caused by 

biotic interactions with other species more fit for that portion of the fundamental niche. 

Although there are some versions of SDMs that attempt a more mechanistic approach 

with physiological and spatial data (Kearney 2009), even those may fail to consider the 

ways in which biotic interactions impact the realized niche (Maguire et al. 2016). Instead, 

there needs to be an approach that more directly addresses the mechanisms driving 

wildlife associations with their habitat or incorporates communities to better account for 

biotic interactions like competition and facilitation (Balzotti et al. 2016, Maguire et al. 

2016). For example, Balzotti et al. (2016) accounted for the fact that while sage-grouse 

are sagebrush (Artemisia spp.) obligates, the two species have independent fundamental 

niches. Both have macroecological constraints, but species of sagebrush persist well 

outside sage-grouse range while sage-grouse only rarely and seasonally use habitat with 

little to no sagebrush.  

To more directly understand wildlife-habitat relationships, researchers often use 

resource selection or habitat selection analyses, which use some of the same statistical 

principles as SDMs while providing more insight into wildlife habitat by comparing the 

characteristics of animal locations to those of the environment available (Manly et al. 

2002, Johnson et al. 2006, Lele et al. 2013, McDonald 2013, McDonald et al. 2013, 

Northrup et al. 2013). This kind of study can more precisely examine the features of the 

environment underpinning species distributions. Habitat selection analysis is based 

around that foundation of comparing used and available points. Even in its simplest form, 

resource selection functions (RSFs) provide valuable insights into wildlife habitat 
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requirements and inform management decisions. Some of the different forms of analysis 

are used to address scenarios where hierarchical processes (Rolstad et al. 2000, Fieberg et 

al. 2010, Li et al. 2015, Muff et al. 2020) or nonlinear effects are present (Aarts et al. 

2013, DeCesare et al. 2014, Severson et al. 2017a, Dahlgren et al. 2019, Kosicki 2020), a 

common problem in a complex system like ecology (Recknagel 2001, Cutler et al. 2007). 

 However, as a form of model-based inference RSFs have some limitations that 

have invited exploration into new methods of analyzing wildlife-habitat relationships, 

including several forms of machine learning to examine selection (McDonald et al. 2013, 

Cushman and Wasserman 2018, Shanley et al. 2021). Some of these methods have 

outperformed traditional methods and are gaining traction in wildlife habitat research 

(Elith et al. 2006b, Shoemaker et al. 2018, Valavi et al. 2022). Compared to traditional 

model-based inference methods, many machine learning techniques are more flexible and 

derive models from the data, allowing them to describe more complex relationships while 

not sacrificing predictive capacity (Recknagel 2001, Cutler et al. 2007, Olden et al. 2008, 

Valavi et al. 2022). Among these methods are random forests (RF), a nonparametric, 

tree-based method that aggregates weak-learning classification trees to form consensus 

model predictions (Breiman 2001). RF has been successfully implemented in wildlife-

habitat analyses at multiple scales, and can be modified to be most appropriate for 

different questions and goals (Mi et al. 2017, Reisinger et al. 2021b, Shanley et al. 2021, 

Valavi et al. 2021). RF has already been used to analyze sage-grouse habitat associations, 

and will likely be a valuable tool in refining our understanding of sage-grouse habitat 

requirements and the ways in which it varies at local regional scales (Doherty et al. 2016, 

Severson et al. 2017b, Picardi et al. 2020). Though there is consensus on many of the 
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habitat features that sage-grouse require, it is clear that limiting resources and specific 

thresholds in individual responses to them vary across sage-grouse distribution (Fedy et 

al. 2014, Coates et al. 2021). In order to best inform conservation and management, it is 

essential to understand the most important habitat factors at various scales and in 

different regions of sage-grouse distribution. By exploring newer, more flexible methods 

like RF, we may be better able to assess that variation and more accurately predict and 

plan for changes in habitat suitability and connectivity. 

 
GREATER SAGE-GROUSE HABITAT AND CONSERVATION 

The problems above point to a few questions to address essential knowledge gaps. 

How do climate, topography, and land cover interact to drive sage-grouse habitat 

selection at local scales? In vulnerable sage-grouse populations, how does the risk of 

thermal stress interact with the risk of predation to drive habitat selection? Further, what 

are the best means to assess sage-grouse habitat selection, especially in environments 

where we anticipate important thresholds and interactions? 

 
Conservation concerns 

 Worldwide, shrubland ecosystems are among the most threatened due to changes 

in climate and land use (Wisdom et al. 2005, Romme et al. 2009, Staver et al. 2011, 

Miller 2020). In North America, sagebrush systems cover less than 50% of their former 

distribution, leaving sagebrush obligate species vulnerable to rapid range retraction, 

habitat fragmentation, and falling populations (West 1983a, Connelly et al. 2004). Sage-

grouse have decreased in abundance by up to 90% since European settlement and by 80% 

since 1965 (Knick and Connelly 2011, Coates et al. 2021), with most of their decline 
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directly linked to habitat loss (Braun 1998, Knick et al. 2003, Schroeder et al. 2004, 

Manier et al. 2013). They are often the focus of conservation efforts because of the 

myriad threats they face (Connelly et al. 2004, Aldridge et al. 2008, Knick et al. 2013), 

and there has been concern for their persistence for more than 100 years (Hornady 1916). 

Among the most significant causes of sage-grouse habitat loss are land conversion 

and disturbance due to human activities like agriculture and energy development. 

Agriculture has been a major cause of sagebrush loss by land conversion and is 

commonly associated with sage-grouse extirpation (Aldridge et al. 2008, Wisdom et al. 

2011). Similarly, livestock grazing is ubiquitous in current sage-grouse habitat and when 

not conducted appropriately can cause significant sagebrush reduction (Evers et al. 2013). 

As much as any other anthropogenic source, energy development (especially oil and gas) 

is a major threat to sage-grouse habitat (Knick et al. 2003, Aldridge and Boyce 2007, 

Holloran et al. 2010, Juliusson and Doherty 2017), with development concentrated 

mostly in Montana, Wyoming, and northern Colorado (Manier et al. 2013). Energy 

development has both direct and indirect impacts on sage-grouse and their habitat. First, 

constructing well pads, roads, pipelines, and transmission lines removes sagebrush and 

fragments otherwise intact landscape in some of the best remaining sage-grouse habitat 

(Walker et al. 2007, 2020, Doherty et al. 2008). Further, energy development and its 

associated infrastructure may also provide perches for avian predators and points of 

invasion for non-native plants (Connelly et al. 2000, Gelbard and Belnap 2003). 

 Throughout sage-grouse distribution, perhaps the most significant threat to their 

habitat is encroachment by conifers, especially pinyon-juniper forests (Wisdom et al. 

2011, Baruch-Mordo et al. 2013, Coates et al. 2017, 2020). Like with energy 
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development, conifer encroachment poses significant direct and indirect threats to both 

sage-grouse and their habitat. Increasing cover of pinyon-juniper forest reduces 

sagebrush, grass, and forb cover by direct competition, especially for water (Miller et al. 

2008). In sagebrush ecosystems, increased tree cover also increases the chance of high 

intensity fire that could replace sagebrush with annual grasses (Chambers et al. 2014) and 

wildfire leads to sage-grouse population decline (Dudley et al. 2021). Further, areas 

encroached by conifers are more likely to experience soil erosion that could leave it 

untenable for sagebrush even if the trees were removed (Chambers et al. 2014). The 

problem of conifer encroachment is widespread in sagebrush habitats. As much as 90% 

of conifer expansion is into sagebrush habitat, where sagebrush cover is quickly reduced 

and sagebrush obligate species that require intact habitat can be excluded (Miller et al. 

2000, Schroeder et al. 2004, Davies et al. 2011, Knick et al. 2013). 

 Conifers expanding into sagebrush are also a significant direct concern for sage-

grouse because wooded habitats likely increase the risk of predation by avian predators. 

While only one study has directly shown greater sage-grouse mortality in areas of 

pinyon-juniper encroachment (Prochazka et al. 2017), sage-grouse also tend to avoid 

conifers and encroachment therefore restricts available habitat (Dinkins et al. 2017, 

Severson et al. 2017b). Predation as a whole may not be a limit to sage-grouse population 

growth across their range, though there is considerable evidence that ravens, a threat 

mostly to sage-grouse nests, can be a strong limiting factor in marginal and fragmented 

habitats (Gregg et al. 1994, Bui et al. 2010, Coates and Delehanty 2010, Dinkins et al. 

2014). In some parts of sage-grouse range, concern is focused especially on the impact of 

ravens, which have expanded their range in recent decades due to increased human 
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structures and conifer encroachment (Coates et al. 2016a) and represent a threat to sage-

grouse nests and broods (Dinkins et al. 2016). In response to the threats caused by conifer 

encroachment, there has been effort in affected parts of sage-grouse distribution to 

remove trees, which has largely resulted in more suitable habitat and benefits to local 

populations (Frey et al. 2013, Severson et al. 2017c). 

 
Climate change implications 

Many of these risks to sage-grouse and their habitat may be compounded by 

climate change, as sagebrush communities are replaced and fragmented because of 

climate-induced precipitation and fire regime shifts (Snyder et al. 2019). One study found 

that climate change is likely to worsen the impacts on sage-grouse of conifer 

encroachment, as the encroached landscape retains water poorly and is likely to leave 

downstream areas without water earlier than they tolerate (Kormos et al. 2017). For a 

sagebrush obligate like sage-grouse, this could be catastrophic, especially at the southern 

end of their range where habitat is already fragmented and climate change is predicted to 

reduce sagebrush cover (Kleinhesselink and Adler 2018, Renwick et al. 2018). Existing 

work also demonstrates the negative impact of direct thermal stress on other gallinaceous 

birds (Hovick et al. 2014, Tanner et al. 2017), and has suggested the same is likely true 

for sage-grouse (Blomberg et al. 2012, Gibson et al. 2017). 

 
RESEARCH OBJECTIVES 

 Sage-grouse have been the subject of considerable research and conservation 

efforts for several decades and the threats to their persistence are well established (Braun 

et al. 1977, Braun 1998, Knick and Connelly 2011). However, that extensive research has 
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also highlighted areas meriting further nuance and investigation. My research will fill 

some of these gaps in understanding, focusing especially on how different factors of 

topography, land cover, and climate impact sage-grouse habitat selection and 

populations. 

 Because sage-grouse are likely threatened across most of their range, some 

research focuses on describing those threats and habitat selection at broad scales to 

provide actionable science to as many stakeholders as possible (Aldridge et al. 2008, 

Garton et al. 2011, Row et al. 2018). That work is invaluable. However, to best conserve 

and manage sage-grouse at local scales, where most decisions are made, it is essential to 

identify fine-scale environmental factors driving habitat suitability and habitat selection. 

Further, it is important to understand how those fine-scale impacts vary across broad 

scales and how different macroecological conditions change sage-grouse habitat selection 

(Doherty et al. 2016, Picardi et al. 2020). For example, though sage-grouse tend to avoid 

trees because of the risks they pose, there are many areas of sage-grouse range with little 

to no tree cover. In those areas, it would be ecologically meaningless to include the 

impacts of trees in conservation and management, as sage-grouse decisions are driven by 

other features. For that reason, it is important to develop place-based models that account 

for both the local and regional environment. In this thesis, my goal was to analyze the 

impacts of land cover and topography on sage-grouse habitat selection and how those 

impacts vary across study areas at the southern edge of their distribution. Further, I 

assessed the potential role of exposure to thermal stress in sage-grouse habitat selection. 

The habitat of that southern range edge is fragmented, of poorer quality than the core of 

sage-grouse distribution, and likely to face effects of climate change. Sage-grouse there 
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may therefore be forced to account for thermal stress in their environment. Lastly, I 

explored new methods of habitat selection analysis and their capacity to both predict new 

data and provide more precise, actionable information to guide conservation than 

conventional methods. 
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CHAPTER II 

GREATER SAGE-GROUSE HABITAT SELECTION VARIES ACROSS THE 

MARGINAL HABITAT OF ITS LAGGING RANGE MARGIN 

 
ABSTRACT 

Studying wildlife-habitat relationships at the edges of their range can provide 

valuable insights into the environmental factors limiting wildlife distributions and most 

likely to drive extirpations and range shifts in response to landscape change. Yet the 

relative impact of those factors is likely different along the range margin, so it is 

important to identify limitations to suitable habitat at both regional and local scales. Some 

of the most drastic impacts of large-scale landscape changes in North America have 

occurred and are forecasted in the sagebrush ecosystems, where species unable to seek 

new habitat in the fragmented landscape will be vulnerable to climatic extremes, 

vegetation community shifts, and anthropogenic land use change. One of the species 

likely under major threat from landscape changes is the greater sage-grouse 

(Centrocercus urophasianus), a sagebrush obligate with habitat constraints that make it 

susceptible to habitat loss impacts as sagebrush systems contract and fragment at their 

southern range margin, already naturally fragmented. In this study we evaluated factors 

of topography and land cover directly impacting habitat selection by sage-grouse in four 

study areas along their lagging range edge. We used >116,000 GPS locations from >90 

grouse across four study areas in southern Utah and Nevada from 2014-2020 in habitat 

selection analyses using random forest models. Our results showed that sage-grouse 

exploit topography and sagebrush cover, possibly to break predator sight lines and 

moderate the risk posed by avian predators using tree perches, complicating the effects of 
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tree cover and conifer encroachment into sagebrush habitat. We found similar trends 

across all four study areas, suggesting sage-grouse along the southern range margin face 

similar limitations. However, the effects were nonlinear and varied—models trained in 

one study area were only moderately successful at predicting selection in others. The 

local idiosyncrasies along this southern range margin indicate a need for place-based 

conservation for sage-grouse and other potentially imperiled species. Incorporating new 

understandings of local impacts will refine regional and range-wide models and support 

efforts to effectively create habitat and plan for range shifts by vulnerable species in 

response to environmental change. 

 
INTRODUCTION 

 Range margins are critical environments to study in order to understand the 

factors limiting wildlife habitat and distribution and to predict how landscape changes are 

likely to drive species redistributions (Travis and Dytham 2004, Seabrook et al. 2014, 

Oldfather et al. 2020). Range margins tend to have lower habitat quality and populations 

there are more at risk of extirpation (Aldridge et al. 2008). The risk to range edge 

populations is even greater when compounded by fragmented habitat, which is common 

to range margins and increases population isolation and extinction probability and 

reduces the capacity to move or adapt to new environments (Pearson et al. 2009, Bush et 

al. 2011). Range margins can therefore act as natural laboratories, as conditions there 

may portend the effects of future changes elsewhere and their isolated, tenuous nature can 

help identify some of the most important factors limiting wildlife habitat.  

The sagebrush ecosystem is among the most threatened in North America and 

wildlife that reside there are threatened by increasing habitat fragmentation and 
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decreasing habitat quality. Invasive species altered fire regimes, climate change, ongoing 

drought, and land conversion for an increasing human footprint all contribute to 

diminishing wildlife habitat. By some estimates, the range of sagebrush ecosystems has 

been reduced by more than 50%, and wildlife species that depend on them are imperiled 

by their loss (West 1983a, Connelly et al. 2004). Those that occupy its edges are likely 

especially at risk, as they will face continuing habitat degradation. Yet even along that 

range margin, there is likely variation in habitat suitability and in the degree to which 

populations are threatened by fragmentation impacts and future ecosystem threats. 

 One of the species likely under greatest pressure from climate and habitat changes 

is the greater sage-grouse (Centrocercus urophasianus, hereafter “sage-grouse”), a native 

grouse and sagebrush specialist that has become emblematic of threats to wildlife across 

the semi-arid West. Though its distribution covers large areas of North America, its 

relatively narrow habitat constraints as a sagebrush obligate make it susceptible to habitat 

loss due to land cover change (Knick et al. 2013, Coates et al. 2018). Sagebrush range 

extent has collapsed considerably since European expansion into western North America 

due to changing fire regimes, livestock grazing, agricultural development, and pinyon-

juniper  forest encroachment (Braun 1998, Knick et al. 2003, Schroeder et al. 2004, 

Aldridge et al. 2008, Wisdom et al. 2011, Juliusson and Doherty 2017) and is likely to 

contract at its southern range margin in response to climate change (Kleinhesselink and 

Adler 2018). Climate change impacts may be especially notable along the sage-grouse 

southern range margin in the basin and range province of southern Utah and Nevada, 

where sage-grouse habitat is naturally fragmented by north-south trending mountain 

ranges into discontinuous sagebrush-dominated valleys. Along this range margin, an 
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increasingly hot and arid climate may decrease the availability of preferred forage and 

shelter from extreme temperatures while also increasing sage-grouse vulnerability to 

predation due to pinyon-juniper (Pinus edulis, P. monophyla, and Juniperus sp.) forest 

encroachment (Baruch-Mordo et al. 2013, Coates et al. 2017, Severson et al. 2017a). In 

order to understand sage-grouse responses to climate, predict future range shifts, and aid 

conservation of sage-grouse, it is essential to focus more research on the southern, 

lagging range edge and the factors impacting habitat selection there (Walther et al. 

2002b, Travis and Dytham 2004, Hampe and Petit 2005, Oldfather et al. 2020).  

Considerable past research has identified abiotic and biotic requirements for sage-

grouse habitat (e.g., Yost et al. 2008, Wisdom et al. 2011, Knick et al. 2013). Yet much 

of that work has focused at range-wide scales to gain valuable knowledge about general 

trends and habitat needs (Aldridge et al. 2008). Some research has addressed sage-grouse 

habitat at range margins, though little research has examined their southern range margin. 

While sage-grouse generally live in semi-arid, sagebrush dominated landscapes, yet there 

is regional variation in macroecological variables within those constraints across their 

range and they likely experience different bioclimatic limitations at range margins than in 

the range core (Aldridge et al. 2008, Doherty et al. 2016). There is likely similar variation 

in small-scale drivers of selection even within regions of sage-grouse range, where the 

most important regional-scale factors are not the same as those affecting individual 

populations or discrete habitats (Dahlgren et al. 2019, Picardi et al. 2020). 

Recently, efforts to improve sage-grouse habitat in the southern end of their range 

have focused on removing pinyon and juniper woodlands that have expanded into areas 

previously dominated by sagebrush (Frey et al. 2013). We examined how sage-grouse are 
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likely to respond to these efforts to increase sagebrush habitat. While the negative 

impacts of pinyon-juniper forest encroachment on sage-grouse are well documented, we 

hypothesized that there are features of topography and other land cover types that 

complicate that effect. In particular, we hypothesized that sagebrush cover and rugged 

terrain may mitigate the threat of predation due to tree cover. Range edges in 

heterogeneous landscapes are constrained by complex interactions of environmental 

factors that are not uniform along that range edge (Boakes et al. 2018, Oldfather et al. 

2020). For that reason, we also hypothesized that sage-grouse habitat selection is driven 

by similar factors across our study region, but with variation between study areas in the 

most impactful variables and in specific thresholds. 

 
METHODS 

Overview  

 We used a multi-step process using random forests (RF), a simple machine 

learning algorithm (Breiman 2001), to test the topographic and land cover characteristics 

driving sage-grouse habitat selection in four study areas across the southern Great Basin 

of Utah and Nevada. We performed model validation on withheld data within each study 

area. We then tested the ability of models from each study area to predict the data from 

every other study area for out of sample validation. We performed all analyses using the 

program R (R Core Team 2020) and associated packages. 

 
Study region 

 Our study region included several discrete areas of sage-grouse habitat along or 

near their southern range margin in southern Utah and Nevada. In Utah, that included the 
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Panguitch, Bald Hills, and Hamlin Valley Sage-Grouse Management Areas (SGMAs: 

Utah Public Lands Policy Coordination Office 2019). Sage-grouse habitat in this region 

tends to be fragmented at large scales by Basin and Range province mountains. In 

Nevada, we worked in the northern end of Hamlin Valley within the Lincoln population 

management unit (PMU) and the Steptoe/Cave PMU (Emm et al. 2019) (Figure 2.1). The 

total study region spanned 37.2 - 39.1°N latitude and 112.4 - 114.9°W longitude. 

Elevation across the entire area ranged from 1600 m to 2800 m. During the study period, 

our study areas had an average temperature of 8.0 °C in Panguitch, 8.1 °C in the Bald 

Hills, 10.3 °C in Hamlin, and 7.4 °C in Steptoe/Cave. The study areas received an 

average of 378 mm in Panguitch, 350 mm in Bald Hills, 302 mm in Hamlin, and 277 mm 

in Steptoe/Cave (PRISM 2020). 

Each of the valleys in our study area was dominated to varying degrees by species 

of sagebrush (Artemesia sp.). In the most xeric valleys, sagebrush species accounted for 

more than 90% of vegetation, interspersed with bare ground and sparse grasses and forbs. 

In more mesic areas, native bunchgrasses, rabbitbrush (Ericameria sp.), and a variety of 

forbs were present, though sagebrush was still the dominant shrub species. The sagebrush 

was mostly A. tridentata wyomingensis and other A. tridentata subspecies, with A. nova 

common in the more xeric habitats. Our study region represented much of the range of 

conditions prevalent in the Great Basin-Colorado Plateau sagebrush semi-desert, a subset 

of the Intermountain West region, but generally more xeric than much of sage-grouse 

range (West 1983b). Across the study region, the valleys were fringed with mixed 

woodlands of pinyon pine and juniper while higher elevations areas included quaking 

aspen (Populus tremuloides), Gambel oak (Quercus gambelii), mountain mahogany 
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(Cercocarpus sp.), juniper, spruce (Picea sp.), and fir (Abies sp.). There were also some 

high elevation sagebrush patches used by sage-grouse that migrate to upward during the 

summer. In each study area, some sage-grouse relocate seasonally while others do not 

apparently dramatically change their home range. 

 
Data collection 

From 2014 to 2020, we captured sage-grouse at night during minimal moon 

illumination using spotlights and dip nets in October – December and late February – mid 

April. We searched both in small groups on foot and on all-terrain vehicles, depending on 

accessibility and acceptable landscape use in that area, similar to Giesen et al. (1982). 

When handling, birds were aged, sexed, and examined for injury. Any bird with injury or 

showing distress was released. We fitted birds with a rump-mounted, solar-powered GPS 

transmitter (22 g; GeoTrak, Inc., Apex, NC; Microwave Telemetry Inc., Columbia, MD) 

with adjustable Teflon straps that included a section of elastic stitched in to stretch with 

the bird’s movements (not to accommodate the size of the bird). Once fitted, we released 

the bird and waited for it to fly away without impairment. On the rare occasion that a bird 

showed an inability to adjust to the transmitter, such as exhibiting short uneven bursts of 

flight followed by a hard landing, we recaptured it, cut off the transmitter, and released 

the bird. 

Transmitters were programmed to collect 4 GPS locations per day: dawn, mid-

day, dusk, and night. During data processing we removed points from the dataset that 

were acquired from any individual with fewer than 100 successful fixes or collected 

within 48 hours post-release. After also removing erroneous points that were clear 

outliers, our dataset included 116,310 points from 96 individuals (median 
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n=1398/individual) during the period of 2014-2020. Of those 96 sage-grouse, 31 were in 

Bald Hills (43,449 locations), 12 were in Cave (10,375 locations), 29 were in Hamlin 

(44,950 locations), and 24 were in Panguitch (17,536 locations). We estimated individual 

90% home ranges using a kernel density estimator with the default settings from the R 

package adehabitatHR (Calenge 2017) and examined the habitat within those estimated 

home ranges to evaluate third-order selection (Johnson 1980). 

Our used-available model design required random ‘availability’ points to compare 

with the available environment (McDonald et al. 2013). To create these points, we 

generated randomly sampled points from within each individual sage-grouse’s home 

range at a 1:10 used-available points ratio. Across all study areas and individuals, this 

resulted in more than 1,339,000 availability points. 

 
Environmental covariate data 

 For all four study areas, we used land cover data from the most recent land cover 

type models from the Landscape Fire and Resource Management Planning Tools Project 

(LANDFIRE; Rollins 2009), downloaded over the extent of our study region. To measure 

the impact of trees, we calculated distance to any pixels classified as some type of trees 

or woodland and the density of those pixels within 400 m and 800 m moving windows. 

Past research has shown that sagebrush patch size can be important (Wisdom et al. 2011) 

so we calculated sagebrush patch contiguity (CONTIG) and core area index (CAI) using 

the R package landscapemetrics (Hesselbarth et al. 2019) with all sagebrush cover types 

in a binary raster. CONTIG measures the spatial connectedness of pixels comprising a 

land cover patch. CAI measures the percent area of a patch (here, of sagebrush) that is not 

adjacent to a nonmember land cover type. Its values can be as low as 0 (when there is no 
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core area) and approach 100 with increasing patch interior. We used CONTIG and CAI 

rather than sagebrush cover density (as we did for tree cover) because a pixel could have 

a very high sagebrush cover density value whether it is within a sagebrush patch, which is 

less ecologically meaningful than the nature of sagebrush patches. On the other hand, 

distance to trees and neighborhood tree cover density impact selection whether or not a 

sage-grouse is in a treed pixel. 

 We downloaded elevation data for the extent of our study region at 10 m 

resolution using the R package elevatr, which accesses Amazon Web Services (Hollister 

et al. 2017). From that digital elevation model (DEM) we calculated metrics of 

topographic position, heterogeneity, and slope. Topographic position index (TPI) is 

calculated as the relative elevation of any one cell compared to the cells around it within 

a user-specified window size, showing whether a DEM cell is part of a hill, valley, or flat 

ground (Jenness et al. 2013). We also calculated a topographic heterogeneity index (THI) 

by summing the absolute value of TPI within that same window size for a measure of 

overall ruggedness. We calculated TPI and THI each at window radii of 50, 200, and 400 

m. More information about the values of environmental covariates for each study area are 

available in Supplementary Information (Appendix S1: Table 2.1). 

 
Model development 

We built models within each of the four study areas to evaluate regional variation. 

We also split the data into three seasons: Breeding (March – May), Summer (June – 

September), and Fall/Winter (October – February), resulting in models for each season 

and models across all seasons. Though seasonality was not our primary focus, it is well 

established that sage-grouse require different seasonal habitats (Connelly et al. 2000, 
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Dahlgren et al. 2016). Including season as part of the analysis allowed us to detect 

possible effects of seasonality on our other findings and make more precise evaluations. 

We analyzed the sage-grouse habitat selection using random forest models (RF), a tree-

based ensemble machine learning classifier (Breiman 2001). RF is a nonparametric 

method that builds hundreds or thousands of classification trees, each using a bootstrap 

sample to train the model while a subset is withheld as an out-of-bag testing dataset for 

each finished tree in the forest. Compared to the more commonly used resource selection 

function (RSF), RF is better able to detect nonlinear effects, is less prone to problems of 

autocorrelation because it does not assume independence of samples, and by default 

considers interactions among variables (Breiman 2001, Cutler et al. 2007, Biau 2012, 

Farrell et al. 2019). It has been successfully used to model species distributions and 

animal habitat selection (Evans and Cushman 2009, Carrasco et al. 2014, Doherty et al. 

2016, Schwalm et al. 2016, Shoemaker et al. 2018, Zhang et al. 2019). RF includes in its 

process withholding a subset of data to test the trained classification trees, but we took 

additional steps to ensure thorough model training and validation. First, we created a 

randomly assigned training dataset with which to develop models using 70% of the data 

within each season and study area. We used the R package ranger (Wright and Ziegler 

2017) to build RF models using leave group out k-fold cross validation (LGOCV) with 

the data grouped by individual sage-grouse ID to strengthen the model’s internal 

evaluation process and avoid overfitting. In each of folds, the data were divided by using 

three quarters of the individuals’ data for model training and the remaining for the cross 

validation. To further avoid overfitting, we increased the minimum node size in each tree 

of the RF from the default of 1 for RF classification to either 20 or 50 points in model 
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tuning. We also tuned the models by allowing the number of variables randomly selected 

for evaluation at each node (mtry) to vary between 3, 4, 5, and 8, whereas the default is 

the square root of the total number of covariates. We selected the best overall model by 

model accuracy. In both classification analyses such as RF and in presence-only models 

like RSF, it can be problematic to oversample from one class of the response variable 

(Chen et al. 2004, MacKenzie 2005, Boyce 2006). Therefore, for each study area – 

season combination, we randomly sampled from the available points for each individual 

for comparison with GPS point detections for that individual, so that each model had a 

1:1 used-available ratio and avoided the problems of an imbalanced design (Evans and 

Cushman 2009, Cushman et al. 2010, Valdes-Donoso et al. 2017). We repeated that 

sampling process without replacement until all ‘available’ points were included in models 

and averaged the models’ predictions during model evaluation (similar to Khalilia et al. 

2011). 

To examine the nature of the variables’ impact, we visualized some of the most 

ecologically relevant relationships with partial dependence plots using the R package pdp 

(Greenwell 2017) and plots of feature contribution (Kuz’min et al. 2011, Palczewska et 

al. 2014, Robinson et al. 2017) using the R package rfFC (Palczewska and Robinson 

2015). Both methods are useful for interpreting RF models. Partial dependence plots 

show the impact of one or two variables when the impact of all other variables is held at 

their mean effect. This is useful for visualizing the basic structure of relationships and of 

targeted two-way interactions. Feature contribution plots compute separately each point’s 

relationship to other variables, accounting for variable interaction rather than averaging 

its effects (Palczewska et al. 2014, Schroeder et al. 2020). The response in feature 
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contribution plots for a classification model shows the increase or decrease in probability 

for each value of the predictor variable (here, of sage-grouse habitat selection) compared 

to the predictions for the rest of the dataset. 

 
Comparison with RSF 

In addition to the RF models, we modeled sage-grouse habitat selection using 

RSF models. RSFs are more commonly used for habitat selection analyses, so we 

included them for comparison with the RF models’ ecological findings and predictive 

performance. We used individual sage-grouse ID as a random effect with a random 

intercept, fitted using the R package lme4 (Bates et al. 2012). We selected the best fit 

models in an information theoretic framework using Akaike’s information criterion 

corrected for small sample size (AICc) (Burnham et al. 2011). We found the best fit 

model for both the entire study region and within each study area to examine place-based 

drivers. We excluded from consideration any models with excessive correlation between 

predictor variables (r > 0.5) and dropped variables with a variance inflation factor greater 

than 10 (Naimi et al. 2014). 

 
Model validation 

 After training and selecting the best fitting models using RF, we evaluated model 

performance in predicting the withheld 30% of the dataset true skill statistic (TSS). TSS 

can theoretically range from -1 to 1, with 0 being a totally uninformative model. Because 

there is argument that metrics like TSS may be inappropriate for a habitat selection study 

(Johnson et al. 2006, Fieberg et al. 2018), we also included the model’s Sensitivity. In 

addition to those evaluation metrics, we also built calibration plots for each of the 
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models, calculating the correlation between expected and observed probability of 

selection, where a higher correlation indicates better model performance (Fieberg et al. 

2018). We repeated the model validation process for each iteration of every study area – 

season model combination and recorded the average by each metric.  

 
Study area comparison 

 To compare across study areas and determine variation in habitat selection across 

the region, we first simply qualitatively compared the most important variables and their 

general effects among the resulting models. Further, we tested model predictive 

performance from one study area to another with the RF models. We used the model for 

each study area to predict the datasets for each of the other study areas, evaluating their 

predictive performance by TSS, Sensitivity, and calibration correlation. A poor fit across 

study areas would indicate unique selection criteria for that study area and demonstrate 

differences in sage-grouse habitat selection across their southern range margin. 

 
RESULTS 

The presence of trees influenced sage-grouse selection among the study areas, but 

differently for each area. In all four study areas, linear distance to trees (TREEDIST), the 

density of trees at 800 m (TREEDEN800), or the density of trees at 400 m 

(TREEDEN400) were among the most important variables influencing sage-grouse 

selection, as measured by mean decrease in Gini score (Table 2.2). In each study area 

there was a clear negative effect of TREEDEN800 (Figure 2.2a) and TREEDEN400 

(Figure 2.2b), as sage-grouse selected for low tree density. This effect was nonlinear and 

for each study area there were different rates of change in selection across tree density. 
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For example, in the Bald Hills area sage-grouse selection was about < 1% more likely at 

15% tree cover (TREEDEN800) than predicted by the rest of the Bald Hills dataset, 

while in Panguitch at the same level of tree cover sage-grouse selection was 8% less 

likely. However, in all study areas there was selection for landscape with < 4% tree 

cover, an overall trend of decreasing selection with increased tree cover, and a negative 

association with proximity to trees in all study areas but Panguitch (Figure 2.2c). In each 

study area, tree cover between 30% and 40% was associated with less pronounced 

avoidance (though still not selection) compared with higher or somewhat lower cover. 

Our results demonstrate important roles of topography and sagebrush cover, 

including in changing or moderating the negative impact of trees. Topographic 

Heterogeneity Index at 400 m (THI400) was consistently one of the most important 

variables in the models. Most importantly, sage-grouse selected slightly heterogeneous 

terrain over flat or more rugged terrain in the Bald Hills, Cave, and Panguitch study areas 

as measured by THI400 (Figure 2.3a). Similarly, sage-grouse selected terrain that is 

slightly lower in elevation than the surrounding area within a 200 m window and tended 

to avoid high points or very low points in the Cave, Hamlin, and Panguitch study areas 

(Figure 2.3b). We found that slope was often important (among the top six variables in 

ten of twelve study area – season model combinations) but it was always less influential 

than at least one other topographic variable (e.g., TPI, THI) based on mean decrease in 

Gini score (Table 2.2). Slope had a generally negative relationship with sage-grouse 

habitat selection, though its effect was uneven (Figure 2.3c). Two-way partial 

dependence plots further demonstrated the influence of topography on selection. For any 
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given distance to trees, sage-grouse habitat selection was most likely in moderately 

heterogeneous terrain and in slightly low-lying, protected areas (Figure 2.4a).  

 Further, the RF models suggest that sagebrush cover plays a role in moderating 

the impact of TREEDIST. Sagebrush patch Core Area Index (CAI) and patch contiguity 

(CONTIG) were among the least important variables in the RF models, but two-way 

partial dependence plots illustrated their impact; for any given distance to trees, sage-

grouse selection was more likely in areas of higher CAI (Figure 2.4b) and CONTIG 

(Figure 2.4c). 

 
Seasonality 

 Predictive power was greater when the models were built with data from only one 

season (Table 2.3), suggesting that within each season, sage-grouse have differing habitat 

selection criteria. In each season, sage-grouse selection decreased as tree density within 

400 m increased (TREEDEN400: Figure 2.5b). This effect was strongest in the 

Fall/Winter season and weakest in the Breeding season. In each season there was a 

positive influence on selection at low tree cover; birds selected areas with < 2% cover in 

Summer and Breeding seasons and < 11% in Fall/Winter, which we found by calculating 

local minima in feature contribution. Selection for distance to trees in each season had a 

nonlinear effect. In Breeding and Fall/Winter seasons, sage-grouse avoided areas close to 

trees, but in Summer they selected areas close to trees and avoid areas very far from trees 

(Figure 2.5c). 

There was a mixed effect of sagebrush core area among the seasons; with 

increasing CAI, this factor’s contribution to modeling habitat selection increased for the 

breeding and fall/winter seasons, with positive effects above moderately high CAI values; 
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this effect was not present for the summer season (Figure 2.6a). Sagebrush contiguity 

(CONTIG) similarly influenced habitat selection in the Breeding and Fall/Winter seasons 

with positive effects above a value of 0.75 (Figure 2.6b). During the summer, sage-

grouse selected for moderate sagebrush continuity (0.4 < CONTIG < 0.75) but avoided 

very contiguous sagebrush (> 0.75). That seasonal variation in sagebrush impacts was 

also somewhat consistent across study areas (Figure 2.7). Most notably, there was 

increasing rate of selection in all four study areas during the Breeding season at high 

CONTIG values (> 0.75), but strong avoidance of those same areas during Summer in 

three study areas. In the fourth, Panguitch, there was still a peak in selection at around the 

same CONTIG value, but very weak selection above that. 

 The effect of topography also varied seasonally. Most notably, during the 

Breeding season sage-grouse selected most for moderately heterogeneous terrain in all 

study areas but the Bald Hills, while in Summer sage-grouse avoided the moderate terrain 

and selected either very flat or rugged terrain everywhere but in Panguitch (Figure 2.8). 

In Fall/Winter, the peak of selection in each study area was in terrain of low to moderate 

heterogeneity more than either the least or most rugged terrain. 

 
Model performance 

 Within each study area, the RF models consistently performed well when 

predicting withheld data measured by each evaluation metric (Table 2.3). The TSS for RF 

models ranged from 0.579 to 0.767 indicating fairly strong predictive performance 

(Landis and Koch 1977). Model Sensitivity values (proportion of true locations correctly 

predicted) were also high, ranging from 0.811 to 0.966. The RF models consistently 

performed better than the RSF models when predicting withheld data and predicting data 
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from other study areas. The RSF models were weaker predicters though still somewhat 

informative, with TSS values from 0.229 to 0.431 and Sensitivity from 0.668 to 0.782. 

 Used-habitat model calibration also demonstrated moderate to strong model 

predictive performance (Table 2.3). The lowest calibration correlation coefficient among 

all study area – season model combinations was in Cave Valley in Summer, with an 

average correlation across iterations of 0.811, while the highest was in the Bald Hills in 

Breeding season at 0.934. 

 
DISCUSSION 

Model performance 

The RF models performed very well within study areas and even the model 

including all study areas and seasons had strong predictive power (TSS = 0.579). The RF 

model including all study areas was not as accurate as any single study area – season 

combination model (TSS range = 0.603-0.767; Sensitivity range = 0.825-0.966), though 

the most important variables in each study area were similar. Distance to trees or tree 

density within 800 m were always among the most important, as was THI400, one of the 

factors that likely moderates the impact of predation risk due to trees. The failings in 

predictive power across study areas may derive from a difference in the magnitude and 

thresholds of the driving variables. For example, increasing TREEDEN400 in every 

study area had a generally negative effect on selection, though nonlinearly and with 

different local perturbations. 

We evaluated factors influencing habitat selection at a local scale to determine 

site-specific selection criteria. In our study region, sage-grouse were more likely to use 
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moderately heterogeneous terrain, small ravines (negative TPI), and larger and more 

contiguous sagebrush patches compared to available habitat. Similar to past studies, sage-

grouse selected lower tree density but did not wholly avoid them (Doherty et al. 2008, 

Baruch-Mordo et al. 2013, Knick et al. 2013); our analysis suggests that topographical 

heterogeneity and topographical position in the landscape may moderate the negative 

impacts of being close to trees suggested by past studies, such as avian predation (Coates 

et al. 2017, Prochazka et al. 2017). This may be because the topographic features block 

predator sightlines and make foraging by predators more difficult. Dinkins et al. (2014) 

found that rugged topography moderated the predation risk posed by golden eagles and 

proposed that the rugged topography limited the eagles’ visual detection of sage-grouse. 

Our study suggests the same effect through a habitat selection framework. We found that 

slope was often an important variable, as reported in prior research (Knick et al. 2013). 

However, our results show that topographic position (being high or low on the landscape) 

and heterogeneity are more important variables, as did Walker et al. (2016). While slope 

may be a useful metric, sage-grouse likely select habitat based on the shelter the 

landscape provides, not its steepness directly. Further, the variable and nonlinear 

responses suggest that sage-grouse select topography based on other environmental cues 

like tree cover. It may be that sage-grouse selection is driven by topography only when it 

can allow them to exploit necessary seasonal resources and minimize predation risk. 

 Our results also show that sagebrush cover drives selection, perhaps by providing 

refuge from predation risk. We found that sage-grouse selected for generally greater 

sagebrush contiguity and avoided tree cover greater than 4%, similar to thresholds 

identified previously for selection and lek persistence (Baruch-Mordo et al. 2013, 
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Sandford et al. 2017). At any distance from trees, sage-grouse were more likely to select 

areas of high sagebrush patch contiguity and core area than small and fragmented 

patches, showing the probable benefit of habitat treatments to remove encroaching 

conifers. 

 
Regional variation 

Our findings reinforce the fact that range-wide predictions must account for 

regional and local drivers of habitat selection. The results of our study suggest that sage-

grouse experience different limitations and drivers of habitat selection throughout their 

range; across this southern range margin topography plays a stronger role than previously 

described for any part of their range. In more contiguous sagebrush semi-desert or 

sagebrush steppe habitat, topography was less influential than demonstrated in this study 

(Doherty et al. 2008, Knick et al. 2013), similar to the findings of Walker et al. (2016), 

who documented sage-grouse selection for somewhat rugged terrain in a naturally 

fragmented area, especially in winter. Doherty et al. (2016) showed that the most 

important ecological variables were markedly different across regional sage-grouse 

management zones. In our study, we worked within only one management zone and 

further demonstrated the “idiosyncrasies of place” (Jeffress et al. 2013) that are important 

to evaluate at several scales. We suspect that in areas of sage-grouse range where conifer 

encroachment is less pervasive, sage-grouse are less likely to exploit topography for 

shelter from predation. 

The place-based RF models for each study area were only moderately informative 

when predicting the data in the other three study areas. This suggests that sage-grouse 

make different selection decisions in each study area based on available habitat and 
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limiting factors. It is important to note that we do not believe this is the result of 

overfitting. Our models consistently outperformed RSFs, despite our measures to avoid 

overfitting restricting to some extent the ability of the RF models to describe 

idiosyncrasies and interactions. Through increasing minimum node size and using a 

repeated leave group out cross validation, we decreased the risk of any group of 

individuals or spatial cluster excessively contributing to model development and driving 

overfitting. These results strengthen the argument for place-based planning and 

conservation (Doherty et al. 2016, Picardi et al. 2020). The regional variation in selection 

detected by our study suggests that while models at the range-wide or state-wide scale 

have great utility for general understanding, predictions and planning should be based at 

local or regional scales whenever possible. 

Our results further support existing findings about the impacts of conifer 

encroachment and the utility of conifer removal, but also point to the need for place-

based conservation and management planning and action (Frey et al. 2013, Sandford et 

al. 2017, Coates et al. 2020, Picardi et al. 2020). Based on our findings of where sage-

grouse select habitat close to trees, conifer removals may be most effective in areas 

where grouse lack other shelter (from topography or largely contiguous sagebrush) to 

reduce predation risk. We found that sage-grouse select relatively flat topography in 

some cases and some parts of the year, and it is likely that they face some tradeoffs in 

using more rugged terrain. Given that sage-grouse are not large animals and much of the 

predation risk they apparently react to is due to fairly short trees, topography likely does 

not need to be extremely rugged to provide shelter. This should inform understanding of 

local habitat conditions in different areas of sage-grouse distribution. Statewide or 
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regional models will be most useful for tracking general population trends and habitat 

loss to identify the areas of sage-grouse range most in need of conservation effort or 

further research. 

 
Seasonality 

 Many previous studies have found seasonal variation in sage-grouse habitat 

requirements. Our data support these past studies; within any study area or across all four, 

the greatest predictive performance was in models of one season rather than the whole 

year. Our study reaffirms some of the seasonal components to selection previously 

described, including a greater affinity for large areas of sagebrush and generally less 

heterogeneous terrain in winter than in summer (Doherty et al. 2008, Carpenter et al. 

2010). However, the effect was nonlinear, and sage-grouse during Summer in all four 

study areas and during Fall/Winter in all but Hamlin avoided the most contiguous 

sagebrush patches (Figure 2.8), which may offer inadequate thermal cover or food 

resources during these times. We found that as distances farther than 1000 m from trees, 

sage-grouse selection became less likely during Summer and in each study area there was 

a generally decreasing probability of selection with increasing distance to trees (Figure 

2.5). This may be because in our relatively xeric study areas, mesic resources necessary 

to survive the summer (Drut et al. 1994) are less likely to be found where there is too 

little water for trees to persist (West 1983b). It may also be that sage-grouse along this 

southern range margin use areas with trees in summer as thermal cover, despite the 

predation risk, especially when they can also exploit topography for visual cover, as we 

found that selection during Summer for the most rugged terrain tended to be higher than 

for moderately heterogeneous terrain (Figure 2.8).  
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Conclusions 

Our findings support the need for conservation at multiple scales, especially as 

climate change and increasing habitat fragmentation force species redistributions and 

extirpations (Chen et al. 2011a, Mosblech et al. 2011). For sage-grouse, this means taking 

into account the considerable variation in habitat conditions and requirements across their 

range at both regional and local scales (Doherty et al. 2016, Dahlgren et al. 2019, Picardi 

et al. 2020). To create more suitable habitat, management actions should identify the 

local limitations in addition to macroecological drivers. At the southern range margin, our 

findings support focusing conifer removals in areas with little cover from heterogeneous 

topography or contiguous sagebrush and where the removal will foster greater, essential 

sagebrush connectivity (Connelly et al. 2000, Wisdom et al. 2005). 

Sage-grouse exhibit site fidelity, and individuals may be unlikely to seek better 

habitat as the southern range margin is pushed northward (Dunn and Braun 1985, Fischer 

et al. 1993, Baxter et al. 2008, Doherty et al. 2010a). Range shifts will therefore be forced 

largely by extirpation, not individual responses, especially in combination with 

decreasing habitat quality and connectivity along a potential range shift path. Sagebrush 

habitat itself is likely to become patchier and less productive at its southern range margin 

in response to climate change, but may in fact increase in cover in cooler areas of its 

range (Kleinhesselink and Adler 2018, Renwick et al. 2018). Sage-grouse response to 

landscape change will likewise be heterogeneous, and place-based models and 

monitoring will be crucial to understanding how they adapt to newly available habitat or 

fail to do so, (e.g., to habitat created by large-scale removal of encroaching conifers). 

Sage-grouse reliance on sagebrush for both food and cover means that as sagebrush cover 
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declines and pinyon-juniper encroachment continues, sage-grouse will likely be 

extirpated from southern areas of their range as they lose important food resources and 

refuge from predation. While sage-grouse are a clear example of variation in species’ 

habitat requirements at various scales, this also applies to many other species potentially 

threatened by landscape changes and fragmentation. Examining habitat suitability 

variation along the range margin will be a critical step to inform a more nuanced 

understanding for conservation and management of threatened species.  
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TABLES AND FIGURES 

Table 2.1. All predictor variables used in data analysis. Land cover variables are at 30 m 
horizontal resolution and terrain variables are at 10 m horizontal resolution. 

Variable Name Category Theoretical 
range Units 

Sagebrush patch core area 
index CAI 

Land 
cover 0 – 100 Percent 

Sagebrush patch contiguity CONTIG Land 
cover 0 – 1 None 

Distance to woodland/forest TREEDIST Land 
cover 

0 – ∞ Meters 

Tree density, 400 m radius TREEDEN400 Land 
cover 0 – 1 Proportion 

Tree density, 800 m radius TREEDEN800 Land 
cover 

0 – 1 Proportion 

Topographic Position Index, 
50 m radius TPI50 Terrain -∞ – ∞   Meters 

Topographic Position Index, 
200 m radius 

TPI200 Terrain -∞ – ∞   Meters 

Topographic Position Index, 
400 m radius TPI400 Terrain -∞ – ∞   Meters 

Topographic Heterogeneity 
Index, 50 m radius THI50 Terrain 0 – ∞ Meters 

Topographic Heterogeneity 
Index, 200 m radius THI200 Terrain 0 – ∞ Meters 

Topographic Heterogeneity 
Index, 400 m radius THI400 Terrain 0 – ∞ Meters 

Slope Slope Terrain 0 – 90 Degrees 
 

  



71 
 

Table 2.2. Top six most important environmental variables in each study area – season 
model combination, measured by mean decrease in Gini impurity index. 
Study Area Season Important Variables 

Bald Hills Breeding TREEDIST, TREEDEN800, 

TREEDEN400, THI400, THI200, 

Slope 

Bald Hills Summer TREEDEN800, THI400, TREEDIST, 

TREEDEN400, THI50, THI200 

Bald Hills Fall/Winter TREEDIST, TREEDEN800, THI400, 

TREEDEN400, THI200, THI50 

Cave Breeding TREEDEN800, THI400, TREEDIST, 

THI200, Slope, TREEDEN400 

Cave Summer TREEDIST, THI400, TREEDEN800, 

Slope, TREEDEN400, THI200 

Cave Fall/Winter TREEDIST, THI400, TREEDEN800, 

Slope, THI200, THI50 

Hamlin Breeding THI400, TREEDIST, TPI400, 

THI200, Slope, TPI200 

Hamlin Summer THI400, TREEDIST, THI200, Slope, 

TPI400, TREEDEN800 

Hamlin Fall/Winter TREEDIST, THI400, THI200, 

TREEDEN800, TPI400, Slope 

Panguitch Breeding TREEDEN800, TREEDIST, THI400, 

TREEDEN400, Slope, THI200 

Panguitch Summer TREEDEN800, THI400, 

TREEDEN400, THI200, Slope, 

TPI400 

Panguitch Fall/Winter THI400, TREEDEN800, Slope, 

TREEDEN400, THI200, TPI400 

 

  



72 
 

Table 2.3. RF model performance measured by true skill statistic (TSS), proportion of 
used points correctly predicted (Sensitivity), and used-habitat calibration correlation in 
each study area and each season. 
Study Area Season TSS Sensitivity Calibration 

Pearson's r 
All All 0.579 0.806 0.867 

All Fall/Winter 0.635 0.846 0.871 

All Breeding 0.604 0.818 0.849 

All Summer 0.589 0.804 0.881 

Bald Hills All 0.707 0.842 0.890 

Bald Hills Fall/Winter 0.767 0.952 0.924 

Bald Hills Breeding 0.719 0.966 0.934 

Bald Hills Summer 0.720 0.934 0.912 

Cave All 0.594 0.811 0.804 

Cave Fall/Winter 0.642 0.884 0.867 

Cave Breeding 0.638 0.871 0.817 

Cave Summer 0.629 0.855 0.811 

Hamlin All 0.586 0.826 0.886 

Hamlin Fall/Winter 0.621 0.861 0.897 

Hamlin Breeding 0.648 0.849 0.892 

Hamlin Summer 0.610 0.825 0.906 

Panguitch All 0.595 0.834 0.873 

Panguitch Fall/Winter 0.603 0.844 0.885 

Panguitch Breeding 0.655 0.863 0.916 

Panguitch Summer 0.700 0.835 0.905 
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Figure 2.1: Four study areas and their context in Utah and Nevada, drawn here by a 
minimum convex polygon around the data points used in our analyses. Study areas are 1) 
Cave/Steptoe Valleys, 2) Hamlin Valley, 3) Bald Hills, and 4) Panguitch.  
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Figure 2.2. Feature contribution1 of three variables of tree cover in models across four 
study areas. Panel a) shows the contribution of density of treed pixels in an 800 m radius 
(TREEDEN800), panel b) shows the contribution of density of treed pixels in a 400 m 
radius (TREEDEN400), and panel c) shows the contribution of the distance to trees 
(TREEDIST). 
1 Feature contribution measures how a variable impacts the random forest model’s 
prediction of a point’s used vs available status at each value of that variable. A positive 
value indicates a greater probability of the point being “used” compared to the prediction 
made by the rest of the model. The solid black line at feature contribution = 0 indicates 
the point at which selection and avoidance are equally likely.  
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Figure 2.3. Feature contribution of three topographic variables in the models across four 
study areas. Panel a) shows the impact of topographic heterogeneity within a 400 m 
radius (THI400), panel b) shows topographic position compared to a 200 m radius 
(TPI200), and panel c) shows topographic slope. 
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Figure 2.4. Partial dependence1 of a) topographic position index within a 400 m radius 
(TPI400), b) sagebrush core area index (CAI), and c) sagebrush patch contiguity 
(CONTIG) with data from all four study areas.  
1 Partial dependence (measured by yhat or ŷ) measures the impact of one variable on the 
predicted outcome (here, probability of selection) of the response. A higher value 
corresponds to a higher probability of selection. 
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Figure 2.5. Feature contribution to model results in each season of a) density of treed 
pixels within 800 m (TREEDEN800), b) density of treed pixels within 400 m, and c) 
distance to trees (TREEDIST). 
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Figure 2.6. Feature contribution to model results in each season of a) sagebrush core area 
index (CAI) and b) sagebrush patch contiguity (CONTIG). 
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Figure 2.7. Feature contribution to model results in each study area and season of 
sagebrush patch contiguity (CONTIG). 
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Figure 2.8. Feature contribution to model results in each study area and season of 
topographic heterogeneity index within 400 m (THI400). 
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CHAPTER III 

GREATER SAGE-GROUSE FACE TRADEOFFS BETWEEN PREDATION RISK 

AND THERMAL EXPOSURE IN SELECTING HABITAT 

 
ABSTRACT 

Climate change is likely to drive widespread species range shifts and extirpations, 

the first of which will happen mostly on the warm edges of their range. That warm 

distribution edge tends to be fragmented, with lower quality habitat and lower population 

density and is more likely to experience threatening weather events. In the Intermountain 

West, climate will likely be warmer and drier in the future, driving a reduction in 

sagebrush (Artemesia sp.) and other shrubland cover. Among the species threatened by a 

hotter and more arid climate is the Greater sage-grouse (Centrocercus urophasianus), 

because they depend on sagebrush for forage and shelter. Other gallinaceous birds are 

sensitive to temperature extremes and exploit refugia to limit thermal stress. Sage-grouse 

likely do the same, but their response to temperature is not well studied. I deployed 75 

data loggers across two valleys in southern Utah and Nevada and collected temperature 

and light intensity data every 30 minutes for 27 months. I used random forest models to 

test the impacts of temperature, land cover, and topography on sage-grouse habitat 

selection. I found that temperature influenced selection in all seasons and both sites. In 

Utah, the warmer site, sage-grouse used areas near trees during the winter and especially 

during summer, likely to avoid extreme cold and heat, respectively. In autumn and spring 

those extremes were less common and sage-grouse avoided habitat near trees. 

Conversely, sage-grouse in the cooler Nevada site were more likely to select large and 

contiguous patches of sagebrush in extremes periods but only selected habitat near trees 



82 
 

in winter cold, avoiding trees during summer heat. Sage-grouse also selected moderately 

heterogeneous terrain during thermal extremes. My findings show that extreme 

temperatures drive sage-grouse to select habitat near trees despite the risk likely posed by 

avian predators. The difference between the Utah and Nevada sites suggests that sage-

grouse likely prefer to use sagebrush as thermal shelter but that it may be inadequate 

shelter during the hottest times, creating tradeoffs and forcing riskier selection. These 

models point towards a more mechanistic understanding of how sage-grouse distribution 

will likely retract at warm edges. This will refine our understanding of seasonal habitat 

requirements and inform management decisions of how to prioritize thermal refugia for 

an imperiled species of conservation concern. 

 
INTRODUCTION 

Ongoing climate change is forcing species redistributions and local extirpations, 

driving shifts in habitat suitability and connectivity and compelling wildlife to shift their 

range or modify their behavior to avoid extirpation (Thomas et al. 2004a, Parmesan 2006, 

Chen et al. 2011b, Varner et al. 2016, Beever et al. 2017, Pecl et al. 2017). However, the 

rates of change in habitat suitability are heterogeneous across a species’ range, as climate 

in itself is not always the dominant driver of range limits (Arntzen and Espregueira 

Themudo 2008, Balzotti et al. 2016, Oldfather et al. 2020). In particular, habitat 

fragmentation (sometimes as an effect of climate) has been implicated as a primary driver 

that both has direct effects and can exacerbate the impacts of climate (Opdam and 

Wascher 2004). Further, local- and micro-scale climates can be decoupled from regional 

trends, especially by topography, complicating predictions of population persistence and 

connectivity (Dobrowski 2011, Ashcroft et al. 2012, Gollan et al. 2015). That decoupling 
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can create microrefugia (Rull 2009, Hannah et al. 2014) where suitable habitat persists 

longer than expected at macroecological scales. This complicates and can limit our 

understanding of how species and ecosystems will respond to climate change and can 

reduce the capacity to plan for and manage change for sensitive species. 

Microrefugia and their impact on species are especially important at species’ 

lagging range margin, where habitat is likely to be fragmented and of lower quality. Even 

for mobile wildlife species, suitable microhabitat can provide essential refuge from 

thermal stress and extreme events that otherwise drive local extirpations at range margins 

(Parmesan 2006, Seabrook et al. 2014, Lima et al. 2016). For species of conservation 

concern, studying their limiting factors at range margins can provide insight into their 

capacity to shift their range or behaviorally adapt to new conditions. In particular, the 

lagging range margin can be used as a natural laboratory to evaluate the environmental 

factors limiting the defining range limits and portend the conditions likely to become 

more common at their current range core (Travis and Dytham 2004, Keith et al. 2008, 

Seabrook et al. 2014). It is therefore critical to identify the mechanisms limiting habitat 

suitability for sensitive species at their lagging range margin at multiple scales (Vale et 

al. 2014). 

Large-scale patterns in species distribution often do not scale down and can 

neglect variation in habitat suitability at finer scales, especially at range margins where 

species distribution models (SDMs) tend to be less accurate (Hannah et al. 2014, Vale et 

al. 2014). While much of the research on range limitations focuses on occupancy, 

studying wildlife habitat selection may offer further insight into how individuals are 

compelled to exploit microhabitat in response to thermal stress. Shifts in wildlife 
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behavior in response to thermal stress or other climatic drivers often precede detectable 

shifts in distribution or population processes (Berger-Tal et al. 2011, Beever et al. 2017). 

By focusing on tendencies in individual habitat selection, we are able to identify the 

environmental factors that foster suitable microhabitat and better inform management at 

local scales for sensitive species. In combination with large scale distributions, 

understanding limits on habitat selection at range margins can provide more accurate 

estimates of wildlife response and sensitivity to climate change. 

The range of sagebrush of western North America has declined rapidly due 

primarily to land conversion, improper grazing management, fire, invasive species, and 

loss to grassland and forest (Connelly and Braun 1997, Connelly et al. 2004). Sagebrush 

species (Artemesia sp.) will likely have varied responses to ongoing climate change, but 

at their southern range limit they are likely to decrease in cover in response to climate 

warming (Tredennick et al. 2016, Kleinhesselink and Adler 2018, Renwick et al. 2018). 

As a sagebrush obligate, greater sage-grouse (Centrocercus urophasianus, 

hereafter “sage-grouse”) range has declined in response to loss of sagebrush-dominated 

habitats (Braun 1998, Connelly et al. 2004, Schroeder et al. 2004). Sage-grouse are a 

species of conservation concern emblematic of the sagebrush system and may serve as an 

indicator of ecosystem change there (Rowland et al. 2006, Hanser and Knick 2011, 

Runge et al. 2019, Ricca and Coates 2020). Habitat specialists like sage-grouse are less 

able to adapt to novel conditions (Hampe and Petit 2005), so studying their habitat 

selection along their lagging (southern) range margin provides an opportunity to assess 

the factors likely to limit suitable habitat and portend future changes to their distribution 

and to sagebrush habitats.  
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For sage-grouse, it is clear that sagebrush extent is an essential driver of their 

habitat, but it is not the only limitation, as sagebrush range extends far south of that of 

sage-grouse. So while SDMs for sage-grouse likely explicitly include sagebrush (Balzotti 

et al. 2016), a habitat selection framework can elucidate important points of stress and 

cryptic fragmentation that would be overlooked at coarser scales or by focusing on 

occupancy. In particular, it is important to assess the effects of direct thermal stress on 

selection, as extreme weather could preclude using otherwise suitable habitat. While 

other gallinaceous birds are sensitive to temperature (Patten et al. 2007, Hovick et al. 

2014, Londe et al. 2021), thermal effects on sage-grouse are not clear. Pratt et al. (2017) 

used relatively coarse scale PRISM data (4 km resolution: [PRISM Climate Group 2020]) 

to study the role of temperature in triggering sage-grouse seasonal migration; that study 

indicated sage-grouse make coarse scale decisions about their habitat in response to 

temperature, but it did not address the degree to which sage-grouse select habitat within 

seasons in response to thermal stress or how seemingly intact habitat can be or will 

become untenable due to temperature.  

In addition to sagebrush extent, sage-grouse habitat selection and long-term 

persistence is strongly impacted by tree cover, especially encroaching forests of pinyon 

pine (Pinus monophyla and P. edulis) and juniper (Juniperus spp.), as conifers can 

replace sagebrush cover and may provide perches for avian predators (Frey et al. 2013, 

Prochazka et al. 2017, Severson et al. 2017b, 2017a, Olsen et al. 2021). Large-scale 

studies of sage-grouse lek persistence and population trends suggest that tree cover can 

be among the greatest threats to sage-grouse and other sagebrush obligates (Davies et al. 

2011, Baruch-Mordo et al. 2013, Knick et al. 2013), though to my knowledge only one 
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study has directly linked conifer cover with decreased survival (Prochazka et al. 2017). 

Yet despite the poorer habitat quality and likely risk of avian predators, sage-grouse 

sometimes select habitat near trees, possibly mitigating that risk by exploiting rugged 

topography to block predator sightlines (Dinkins et al. 2014, Beers and Frey 2022a). The 

reason for this apparent incongruity between some observed selection and population 

processes is unclear. However, it has been suggested that sage-grouse may be prone to 

ecological traps or maladaptive selection, wherein they select areas of greater risk to 

exploit its resources in spite of negative fitness impacts (Kirol et al. 2015, Coates et al. 

2017, Pratt and Beck 2021). The reasons for that potentially risky selection have not been 

explored. 

It is likely that sage-grouse will be extirpated from large swathes of their current 

southern range if warming and drying trends continue, resulting in sagebrush conversion 

to grassland, increased fire frequency, and decreased soil moisture and mesic resources 

(Schlaepfer et al. 2012a, Kleinhesselink and Adler 2018). To best conserve sage-grouse, 

it is therefore important to assess the role that thermal stress plays in driving their habitat 

selection in the fragmented habitat of their southern range edge. In identifying the direct 

impact of temperature on selection, we will be better able to predict the local and regional 

variation in habitat suitability along the lagging range margin and to inform conservation 

efforts to foster potential microrefugia. Knowledge of selection for suitable microhabitat 

can complement larger scale efforts and inform ecosystem management to better identify 

areas at multiple scales that are most likely to support that microhabitat and to take 

actions to foster or create it (Kirol et al. 2015).  
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In this study, I sought to identify trends in sage-grouse habitat selection within 

each season in response to near-surface temperature, to determine when and where sage-

grouse select habitat in response to temperature and identify where temperature is most 

likely to limit habitat suitability. I hypothesized that sage-grouse would make micro-scale 

habitat selection in response to extreme temperatures within their home range and within 

otherwise suitable sagebrush habitat. 

 
METHODS 

Study areas 

I performed this study in two valleys near the sage-grouse southern range margin. 

Both valleys were a mosaic of sagebrush and grasses bordered by mountains (Figure 3.1). 

In this region sagebrush is largely Artemisia tridentata wyomingensis with patches of 

other A. tridentata subspecies and some patches of A. nova in the more xeric areas. The 

mountainous areas included some patches of sagebrush, but were largely dominated by 

mixed pinyon-juniper forest (P. monophylla and J. osteosperma), mountain mahogany 

(Cercocarpus sp.), and occasional stands of aspen (Populus tremuloides). In each valley, 

the pinyon-juniper forest was expanding further into the valley, and in each there had 

been management actions to remove some of that expansion. 

Buckskin Valley and Bear Valleys in Utah are in the Panguitch Sage-grouse 

Management Area (SGMA: Utah Public Lands Policy Coordination Office 2019). This 

Bear-Buckskin complex (hereafter, Buckskin) was the smaller of the two study areas 

(~220 km2), located further south, and had a smaller elevation range used by sage-grouse 

(2100 – 2500 m). The highest areas were the ridge between the two valleys and the 
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lowest was the open, flat center of Buckskin Valley. There were large patches of dense 

sagebrush as well as large extents with little to no sagebrush, which was covered by 

grasses (annuals and native bunchgrasses) and bare ground. Over the 30-year period 

(1991 – 2020) used to define PRISM data climate normal, Buckskin had a mean annual 

temperature of 7.3 °C and received 435 mm of precipitation. A large portion of that 

precipitation (127mm) came during the spring, March – May, though the second-wettest 

month on average was August and the second-wettest three-month period was December 

– February (109 mm). There was a mean monthly difference in maximum and minimum 

temperatures of 18.1 °C. During the study period, Buckskin had a mean annual 

temperature of 8.6 °C and an average of 345 mm of precipitation each year. The hottest 

month was August (Tmean = 19.8 °C) and the coldest was February (Tmean = -3.9 °C). 

There was a mean monthly difference between maximum and minimum temperatures of 

15.2 °C. The northern half of Buckskin is divided by Utah State Highway 20, which sees 

moderate traffic. Bear Valley had a few small houses and ranch buildings, but there were 

none in Buckskin. Buckskin and Bear Valleys each had a few small gravel roads through 

them. 

Steptoe Valley is part of the Steptoe/Cave Population Management Unit in 

Nevada (Emm et al. 2019). It is larger than Buckskin (~540 km2) and is interspersed with 

patches of grasslands throughout the valley, commonly including cheatgrass (Bromus 

tectorum), crested wheatgrass (Agropyron cristatum), Sandberg’s bluegrass (Poa secunda 

or Poa sandbergii), bluebunch wheatgrass (Pseudoroegneria spicata), and Indian 

ricegrass (Oryzopsis hymenoides). Within this study area, grouse were generally located 

at higher elevations than in Buckskin, Utah (2000 – 2700 m). Buckskin had a greater 
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seasonality in its precipitation and tended to be warmer than Steptoe in each of their 

respective wettest and driest quarters of the year. 

Compared to Buckskin, Steptoe was drier and of about the same temperature. 

From 1981 – 2010, Steptoe had a mean annual temperature of 7.3 °C and 317 mm of 

annual precipitation. Like in Buckskin, most of the precipitation fell in March – May (87 

mm) and the second wettest quarter was December - February (78 mm). In Steptoe, the 

warmest month (July) had an average maximum temperature of 30.3 °C and the coldest 

month (December) an average minimum temperature of -11.1 °C. There was a mean 

monthly difference in maximum and minimum temperatures of 18.1 °C. During the study 

period, Steptoe received an average of 233 mm of precipitation. The hottest month was 

July (Tmean = 19.6 °C) and the coldest was February (Tmean = -3.9 °C). During the study 

period there was a mean monthly difference in maximum and minimum temperatures of 

19.3 °C. In Steptoe, there was a dirt road on either side of the valley and the two met 

where the low area of the valley narrowed to about 3 km across. Where the valley is close 

to 10 – 12 km across, there are a few permanent structures on the west side, mostly 

clustered together. There is also a small state park, Ward Charcoal Ovens State Historic 

Park, near the edge of the treeline with several stone charcoal ovens. Like much of sage-

grouse habitat in the Great Basin, both Buckskin and Steptoe are used for cattle ranching 

and sage-grouse could encounter both cattle and cattle-grazed habitat in almost any part 

of each study area. 

 
Landscape covariate data 

I downloaded 30 m resolution land cover data from the Landscape Fire and 

Resource Management Planning Tools Project database (LANDFIRE; Rollins 2009) to 
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build rasters of cover by sagebrush and trees. I first generalized the land cover types, 

reclassifying all cover types that included the words “tree,” “woodland”, “forest”, 

“conifer”, and “juniper” as tree cover, and any type described as “sagebrush” or 

“Artemesia” as sagebrush cover. I created metrics of tree cover—the density of “tree” 

pixels within 400 m and 800 m radii (TREEDEN400 and TREEDEN800) and the 

distance to any “tree” pixel (TREEDIST). Because the size and configuration of 

sagebrush patches can be important for sage-grouse survival, I used the landscapemetrics 

package in R (Hesselbarth et al. 2019) to calculate the contiguity (CONTIG) and core 

area index (CAI) of sagebrush patches. Pixels that fell outside of sagebrush cover 

received a score of 0 for each of those metrics. CONTIG measures the degree to which 

pixels within a patch of a single cover type are connected and values can range from zero 

to one. CAI measures the percentage of pixels of cover type patch that are not adjacent to 

pixels of a different cover type. As a patch increases in size and interior area, CAI 

approaches 100. 

Because topography plays a role in sage-grouse survival and habitat selection 

(Aldridge et al. 2008, Knick et al. 2013, Dinkins et al. 2014, Picardi et al. 2020, Beers 

and Frey 2022a), I also included metrics of topographic position and heterogeneity. I first 

used the R package elevatr (Hollister et al. 2017) to download a 10 m resolution digital 

elevation model (DEM) for each study area, then used that DEM to calculate indices of 

topographic position (TPI) and heterogeneity (THI) within moving window sizes of 50 

m, 200 m, and 400 m. TPI (Jenness et al. 2013) is a measure of how high or low any 

DEM cell is compared to the cells around it within a user-defined radius. Cells with 

negative values are lower than the terrain around them and positive values indicate a high 
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point or ridge. THI is a measure of overall ruggedness, calculated by summing the 

absolute value of TPI at every cell within moving window sizes of 50 m, 200 m, and 400 

m.  

 
Temperature data 

I deployed HOBO Pendant Temperature/Light data loggers (Onset Corporation, 

Bourn, MA, USA, #UA-002-64) in a stratified random distribution in each valley, placed 

within areas of known sage-grouse use, collecting data every 30 minutes from June 2018 

– November 2020. I attached the loggers to sagebrush or other shrubs where available to 

minimize exposure to direct sunlight, on the north side of the shrub. At points where 

there was no shrub available, I attached the logger to an aluminum tent stake and drove it 

into the ground on the north side of a bunchgrass. At each type of location, I positioned 

the logger 15 – 25 cm above the ground to mimic the conditions a sage-grouse would 

experience. 

In July 2019 I picked up the loggers to download the data, install a new battery, 

and redeploy them in a different random configuration. In both years some of these 

loggers failed or were destroyed (seemingly by cows, ravens, and coyotes). Of the 

loggers deployed in 2018, I was able to use data from 31 from Steptoe and 22 Buckskin. 

Of those deployed in 2019, I used data from 40 loggers from Steptoe and 28 loggers from 

Buckskin. For each logger, I excluded any data where light intensity was > 10,000 

lumens to exclude warming from direct sunlight. This filtering left a total of 1,016,833 

data points. In combination with loggers lost to extreme cold and animals, data omitted 

due to direct sunlight, and the loggers being deployed in summer, in both Buckskin and 

Steptoe I had the most temperature data points in Autumn (Buckskin n = 100,362;  
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Steptoe n = 168,901), followed by Summer (Buckskin n = 94,264; Steptoe n = 156,610), 

Winter (Buckskin n = 66,914; Steptoe n = 112,597), and Spring (Buckskin n = 56,816; 

Steptoe n = 95,823). From those points, I pulled the daily maximum, minimum, and 

difference (Tmax, Tmin, Tdiff, respectively) and then calculated the monthly average for 

each of those metrics for each logger.  

After calculating the Tmax, Tmin, and Tdiff for each logger and each month in the 

study period, I created an interpolated surface at a 100 m resolution and aggregated the 

monthly averages by season. I performed the interpolation using the interpolation tools in 

ArcMap version 10.6 (Environmental Science Research Institute (ESRI), Inc., Redlands, 

California, USA), co-kriging across the extent of the study area in each valley assuming 

that temperature varied with elevation. While elevation is not the only driver of 

temperature at local scales, it is an important factor (Dobrowski 2011, Ashcroft and 

Gollan 2012), thus I did not include a separate measure of elevation in the habitat 

selection analysis to avoid problems of variable collinearity. I grouped September – 

November as Autumn, December – February as Winter, March – May as Spring, and 

June – August as Summer. 

 
GPS data 

For sage-grouse locations, I tracked individual birds using rump-mounted GPS 

transmitters (22 g Solar Argos/GPS PTT-100, Microwave Telemetry Inc., Columbia, 

MD; 22 g GPS-PTT, GeoTrak, Inc., Apex, NC). I captured sage-grouse at night with little 

to no moon illumination using spotlights and dip nets, searching on foot in groups of 2 – 

4 in areas of known or suspected sage-grouse use (after Giesen et al. 1982). While 

handling the sage-grouse, I assessed their age, sex, mass, and body condition. I declined 
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to put a transmitter on any grouse with an injury or a mass less than 1 kg. I released 

grouse at the capture site and monitored their departure flight to ensure that bird was 

moving naturally. The sage-grouse included in this study were captured in years 2017-

2019.  

The GPS transmitters logged four locations per day. For this study, I removed 

from the dataset any points from within 48 hours of a sage-grouse’s capture date, points 

for any grouse with fewer than 100 successful GPS fixes, and points that fell outside of 

the spatial extent of the data loggers in each study area or outside the study period of June 

2018 – November 2020. This left a total of 8163 data points from 14 birds in Buckskin 

and 7209 locations from 15 birds in Steptoe. I calculated a 90% home range for each 

sage-grouse from a kernel density estimator using the R package adehabitatHR (Calenge 

2017). Within that home range, I randomly generated points to sample the landscape as 

“available habitat” at a 1:10 ratio in a used-available design (Johnson 1980, McDonald et 

al. 2013). However, for each run of the models I randomly selected from within the 

available habitat point dataset for a 1:1 ratio between used GPS detection points and 

available habitat sampling points. This 1:1 ratio avoids problems that can arise from 

oversampling from one class of the response variable in a classification method like 

random forest classification (Chen et al. 2004, MacKenzie 2005, Reisinger et al. 2021, 

but see Street et al. 2021). 

 
Model Construction 

I grouped the data within the two study areas and within four seasons, creating 

eight groups of data for analysis. For each of those data groups, I built models both 

including and excluding temperature to assess how temperature affected model 
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performance, analogous to using a null model for comparison. For each analysis, I built 

random forests (RF) (Breiman 2001), a simple machine learning algorithm that has been 

used successfully with complex ecological datasets (De’ath 2007, Yu et al. 2020), 

including presence-only and animal habitat selection data (McDonald et al. 2013, Mi et 

al. 2017, Zhang et al. 2019, Picardi et al. 2020, Rather et al. 2020). RF is a tree-based 

classification model that uses a bootstrap sample of the data provided to train a model 

and a withheld sample to test each iteration of the tree. It has outperformed a traditional 

logistic regression approach in a used-available framework, including wildlife habitat 

selection (Cushman et al. 2010, Mi et al. 2017, Cushman and Wasserman 2018, 

Shoemaker et al. 2018, Rather et al. 2020). I used the R packages ranger (Wright et al. 

2021) and caret (Kuhn 2016) to grow the RF with a leave-group-out cross validation 

(LGOCV) grouped by sage-grouse ID to build these models. I used 70% of the data for 

initial model training with a random subset of 30% of the data withheld for model 

validation. I tuned the models in the training process by allowing the number of features 

selected for testing at each node (mtry) to vary between 2, 3, 4, 5, 8, and 10. To minimize 

the chance of overfitting, I also set the minimum node size at 50 points, which prevents 

each decision tree in the model from making inferences on too little data (Valavi et al. 

2021). 

To evaluate each model’s performance, I used the caret package (Kuhn 2016) in 

R to predict the withheld 30% of the data and measured model performance by the true 

skill statistic (TSS), Cohen’s kappa, model sensitivity, and used-habitat calibration 

(Fieberg et al. 2018). TSS measures both model specificity and sensitivity while being 

insensitive to prevalence (Fielding and Bell 1997, Allouche et al. 2006). There is also an 
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argument that model evaluation metrics for presence-background (i.e., used-available) 

data should not be prevalence-insensitive (Stephanie et al. 2001, Lawson et al. 2014), so I 

also included Cohen’s kappa in model validation. Kappa ranges from -1 to 1, where 

higher values indicate greater model performance or strength of agreement between 

withheld data and the model’s predictions (Cohen 1960). A guideline for evaluating 

kappa suggests that a range 0.41 – 0.6 suggests “moderate” agreement, 0.61 – 0.80 

“substantial” agreement, and 0.81 – 1.00 “almost perfect” agreement (Landis and Koch 

1977). The same guideline applies to TSS. Further, because the available points in a 

used-available design do not necessarily represent species absence, I also calculated the 

model’s performance in predicting only the true presence points (the model’s sensitivity) 

and calculated the correlation in used-habitat calibration. I repeated the process of dataset 

division ten times for each study area and season and report the average model 

performance metrics.  

I also measured variable importance in each model using the mean decrease in 

Gini node purity (Calle and Urrea 2011), which measures each variable’s contribution to 

the RF model’s ability to distinguish between response variable classes. I examined the 

impact of different variables using partial dependence (R package pdp: Greenwell 2017), 

which is useful for interpreting RF models and others modeling methods that measure 

nonlinear effects (Elith et al. 2008, Robinson et al. 2017). In my models, partial 

dependence plots visualize the marginal effect of an independent variable on the model’s 

predicted used vs available outcome at every value of that independent variable when the 

effects of all other covariates are held at their mean value. Partial dependence plots are 

also useful for showing the interaction of two variables in predicted selection or 
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avoidance, where two independent variables are on adjacent axes and the dependent 

variable is represented by a color gradient in the two-dimensional space of the plot. 

 
RESULTS 

Temperature data 

At a broad spatial scale, the average ambient temperatures of Buckskin and 

Steptoe were nearly equal, though Steptoe experienced both warmer maximum and 

colder minimum temperatures while being drier (PRISM Climate Group 2020). However, 

the data collected from the data loggers indicated that Buckskin was slightly warmer in 

all four seasons (all t-test p < 0.001, Table 3.1). Buckskin had a higher mean temperature 

in summer months; Steptoe had a colder mean winter minimum temperature.  

 
Model performance 

I generated sixteen different model combinations of study area, season, and data 

logger temperature inclusion. By comparing the performance of models in the same study 

area and season with and without temperature metrics, I evaluated the degree to which 

temperature drives sage-grouse habitat selection in each of those situations. Most study 

area – season model combinations performed adequately or better, regardless of whether 

the model included temperature data (Table 3.2). Here, I report a “mean performance” for 

each model by averaging the value of each performance metric, which is a simple way to 

initially describe model performance. 

In Buckskin, Utah, all models that included data logger temperature performed 

moderately to very well, showing “substantial” (0.61 < kappa < 0.80) to “near-perfect” 

(kappa > 0.81) agreement between training data model predictions and withheld testing 
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data. The best performing model was in Summer, which performed best by all metrics 

(mean performance = 0.940), followed by Spring (0.840), Winter (0.828), and Autumn 

(0.825) (Table 3.2). For each evaluation metric, the Summer model’s performance was in 

the range of “near perfect” agreement between model predictions and withheld data, and 

including temperature covariates improved model performance most in Summer (Table 

3.2). The performance of the poorest models that included temperature still suggest 

adequate or good performance. When excluding temperature, mean model performance 

was again highest in Summer (0.856), followed by Winter (0.824), Spring (0.815), and 

Autumn (0.811). Notably, model performance was slightly higher without temperature 

covariates than with them by at least one evaluation metric in Winter (sensitivity), Spring 

(kappa), and Autumn (kappa), suggesting less impact of temperature on selection in those 

cooler seasons (Table 3.2). 

In Steptoe, Nevada, the best performing model that included temperature 

covariates was also in Summer (mean performance = 0.815). Mean performance was 

lower but still good in Spring (0.774), Winter (0.788), and Autumn (0.804). For each 

seasonal model with temperature covariates, TSS was greater than 0.63, kappa was 

greater than 0.62, sensitivity was greater than 0.78, and UHC correlation was greater than 

0.96 (Table 3.2). Steptoe models excluding temperature covariates also performed at least 

moderately well by each evaluation metric, with acceptable mean model performance in 

Summer (0.746), Winter (0.727), Autumn (0.726), and Spring (0.711). The greatest 

change in model performance in predicting withheld data due to including temperature 

was in Autumn (Δ mean model performance = 0.064). The next biggest changes in 
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performance due to temperature were in Spring (0.061), Winter (0.056), and Summer 

(0.058).  

By including temperature in Steptoe’s Summer and Winter models, when 

temperatures were most extreme and therefore most likely to be limiting, model 

performance improved by model sensitivity = 0.057 and 0.047, respectively. Similarly, 

the same comparisons in Buckskin showed a change in sensitivity of 0.134 in Summer 

and -0.037 in Winter due to including temperature in the models. This shows a greater 

impact of temperature in both study areas during Summer than in Winter. Further, there 

was a proportionally larger impact in Buckskin than in Steptoe. Including temperature in 

Buckskin had a greater absolute impact on model sensitivity, and the difference in 

improvement caused by adding temperature was greater in Buckskin (0.171) than in 

Steptoe (0.010). 

 
Variable importance 

Our RF models of sage-grouse habitat selection showed that temperature metrics 

played an important role in each model combination of study area and season as 

measured by the mean decrease in Gini index. Compared to the other variables included, 

temperature was the most important in Summer in both Steptoe and Buckskin (Table 

3.3). Although of less influence in Winter, temperature variables were still important to 

model fit. In Buckskin, sagebrush patch contiguity was among the three most important 

variables in every model whether or not temperature was included. In contrast, sagebrush 

contiguity was not among the most important variables in Steptoe in any model. Distance 

to trees (TREEDIST) was more important than sagebrush patch contiguity and core area 
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index in every model. In all seasonal models excluding temperature covariates, distance 

to trees was among the three most important variables. 

 
Response to temperature 

Examining the partial dependence of the temperature variables in my models 

suggest that extreme temperatures limit habitat selection. Partial dependence plots show 

that within each season, sage-grouse were most likely to select moderate temperatures 

and avoided extremes. In Buckskin, the probability of habitat selection dropped quickly 

and approached zero where temperatures in Summer exceeded roughly 35 °C, or 28 °C in 

Autumn (Figure 3.2). In Steptoe, the effect was similar but not as clear (Figure 3.3). 

Sage-grouse also selected moderate minimum temperature in Summer, Autumn, and 

Spring in both study areas. In Winter, the probability of selection decreased rapidly 

below a minimum temperature of -17 °C but then plateaued (Figure 3.4). Similarly, the 

partial dependence of selection on maximum temperature in Steptoe was not as limiting 

as in Buckskin—the rate of change of partial dependence was slower across the available 

temperature range in each season and the peak of selection was less distinct. These results 

indicate that sage-grouse selection varied across the available temperature range more in 

Buckskin than in Steptoe. 

These results indicate the importance of temperature in sage-grouse habitat 

selection, but do not in themselves show how the birds respond to temperature. The two-

way partial dependence plots I built demonstrate the choices sage-grouse tend to make 

during thermal extremes. In Summer, measures of partial dependence show that sage-

grouse used areas closer to trees when maximum temperature was high, especially when 

it was greater than ~25 °C. (Figure 3.5). Though sage-grouse rely on sagebrush, my 
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results indicate that they did not select large or contiguous patches of sagebrush during 

high summer heat in Buckskin (Figure 3.6). Sage-grouse likewise tended to avoid the 

coldest temperatures during Winter, but during these temperatures, they were more likely 

to be nearer to trees. In particular, when Winter minimum temperature was less than -16 

°C, sage-grouse were likely to be less than 50 m from trees (Figure 3.7). In contrast, 

sage-grouse in Steptoe were more likely to avoid treed areas during extreme heat trees—

when Summer maximum temperature was above 30 °C, selection was most likely > 1500 

m from trees (Figure 3.8). Instead, at those higher temperatures Steptoe sage-grouse were 

likely to select areas of moderate to high sagebrush patch CAI, though that trend was 

weaker than selection for trees in Buckskin (Figure 3.9). Further, sage-grouse in 

Buckskin did not show strong selection for areas near trees during the highest or lowest 

temperatures of Autumn and Spring, when those high and low temperatures were less 

extreme than Summer and Winter (Figure 3.11). 

There was also an effect of topography interacting with temperature on bird 

locations. In Buckskin, sage-grouse selected areas of greater topographic heterogeneity 

during Summer heat (Figure 3.12a). When maximum temperature was above 30 °C, 

selection was most likely at moderate to high values of heterogeneity (THI400 > 4800). 

The effect of topographic heterogeneity was less clear in Steptoe during Summer, where 

sage-grouse selected moderately rugged terrain but with less difference in selection 

across the ranges in maximum temperature and heterogeneity, with the highest selection 

rate where THI400 was 7000 – 12000 (Figure 3.12b). More rugged terrain exists in both 

study areas than is represented in the GPS location dataset, especially in Steptoe, but fell 

outside of the home ranges used to define “available” for this 3rd order selection process. 
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DISCUSSION 

Temperature differences in study areas 

The temperature data I recorded revealed differences in my Buckskin (Utah) and 

Steptoe (Nevada) study areas that were not clear using the coarser-scale PRISM data. 

PRISM data suggested that the two were nearly identical in average temperature and that 

Steptoe was drier. I did not measure precipitation, but measurements collected from 

temperature data loggers suggested that Buckskin was slightly warmer than Steptoe on 

average through the entire year. This suggests that while data like PRISM is critical for 

understanding many broad-scale patterns, including for sage-grouse, it is also essential to 

understand how temperature varies and drives ecological phenomena at biologically 

relevant scales. For a study of third-order habitat selection where individual home ranges 

may not cover more than a few pixels of PRISM data, there may be variation in 

temperature at finer scales that drives individuals’ choices that would be missed by 

coarser-scale data. For example, if simply considering PRISM data, Steptoe may have 

appeared to be the less suitable of the two areas, though I did not build RF models of 

selection using PRISM data for comparison. 

Further, temperatures in both study areas during the study period (June 2018 – 

November 2020) were higher than the period currently used to define climatic norms 

(1990 – 2020). The difference was small but given the differences I found in habitat 

selection between study areas, it may be enough to reach a threshold in thermal stress 

beyond which sage-grouse select habitat differently. Ongoing climate change is likely to 

drive shifts in sagebrush distribution and ecosystem composition (Schlaepfer et al. 2012b, 

Evers et al. 2013, Kleinhesselink and Adler 2018, Snyder et al. 2019), and species in 
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Great Basin lowlands are likely to face extirpation without adequate thermal refuge 

(Warren et al. 2014). As that process continues, it will be increasingly important to 

identify potential environmental thresholds, how sensitive species like sage-grouse are 

likely to respond, the habitat that may provide refuge in times and places that exceed 

these thresholds, and how managers can plan for and mitigate negative impacts. 

 
Response to temperature 

My results suggest that sage-grouse select habitat in response to temperature and 

that thermal extremes may be limiting. However, I also found that sage-grouse use land 

cover—and to a lesser extent, topography—as shelter from those extremes. When 

temperatures were highest, sage-grouse were more likely to select habitat in either more 

contiguous sagebrush or nearer to trees. In the warmer study area, Buckskin, sage-grouse 

selected habitat nearer to trees while in Steptoe they selected sagebrush cover. To my 

knowledge, this is the first time that any study has documented how sage-grouse habitat 

selection varies in response to temperature, though other research has detected wildlife 

responding to temperature at similarly fine scales (Varner and Dearing 2014), including 

Galliformes (Hovick et al. 2014, Londe et al. 2021). Where temperature at fine scales can 

be decoupled from larger patterns and provide suitable thermal refugia, it is critical to 

identify the characteristics of the landscape that foster suitable microhabitat (Rodhouse et 

al. 2010, Varner and Dearing 2014). Some of the clearest evidence of the influence of 

temperature in this study is through measures of variable importance and model 

performance. In each of the eight models that included temperature, all three temperature 

covariates were among the five most important variables. Further, including temperature 

consistently improved model performance compared to models without temperature 
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covariates, especially in Buckskin in Summer. While it is clear that climate informs sage-

grouse distributions and populations (Blomberg et al. 2012, Coates et al. 2016b, 2018, 

Acevedo 2021) and climate change is likely to negatively impact sagebrush cover in the 

southern Great Basin (Kleinhesselink and Adler 2018), it is important to explore potential 

mechanisms of individual habitat selection that drive those larger scale patterns as I have 

in this study. 

In examining two-way partial dependence plots in combination with measures of 

variable importance and model performance, the impact of temperature on selection and 

where sage-grouse and characteristics of thermal refugia are clear. Combined, my results 

indicate that sage-grouse respond to temperature, but that other variables play a strong 

role in selection. If they did not, there would be no interaction between temperature and 

other variables, and at extreme temperatures there would always be low selection. On the 

contrary, sage-grouse are likely forced to make decisions that balance resource 

acquisition and the potentially competing risks of predation and thermal stress, similar to 

the tradeoffs faced by greater prairie chickens (Tympanuchus cupido [Londe et al. 2021]). 

For example, sage-grouse may be exposing themselves to greater risk of predation by 

spending time near the cool shade of trees, balanced against the risk of hyperthermia in 

sagebrush patches during high temperatures, which may explain some past findings of 

apparent high risk selection by sage-grouse (Cutting et al. 2019). My data clearly support 

this, especially in Buckskin. In Spring and Autumn, when thermal extremes were less 

common, sage-grouse in Buckskin showed less selection for area near trees than during 

the higher maximum temperature in Summer. While metrics of vegetation cover and 

activity such as Normalized Difference Vegetation Index (NDVI) are important for sage-
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grouse (Dinkins et al. 2017, Stoner et al. 2020), the grouse in this study generally selected 

areas with moderate temperatures and avoided extremes where possible, suggesting that 

temperature also drives selection. In Steptoe and Buckskin, most of the mesic habitat, 

which sage-grouse tend to select during late brood rearing (summer), is not treed riparian 

area like in some areas of sage-grouse distribution and there is likely little direct 

correlation between tree cover and mesic resources. Were sage-grouse primarily selecting 

based on NDVI and mesic resources, then I would not have detected sage-grouse 

selection for areas close to trees during higher temperatures, as those areas are not rich in 

mesic resources. Instead, sage-grouse would have continued to avoid trees because they 

could exploit the resources of mesic areas without incurring the risk of predation near 

trees. Further, the fact that sage-grouse in my two study areas did not select for the same 

land cover in response to thermal extremes suggests that vegetation activity (e.g., NDVI) 

is not their only limitation, and there is cryptic fragmentation of suitable sagebrush 

habitat in Buckskin, while in Steptoe the contiguous sagebrush provides enough thermal 

cover that sage-grouse there are not forced to shelter near trees.  

Similarly, several previous studies have found negative effects of terrain 

ruggedness on sage-grouse (Doherty et al. 2008, 2010b, Knick et al. 2013, Dinkins et al. 

2017). Those have largely examined larger-scale processes such as population size or lek 

persistence and captured a broader spatial sample of the “available” landscape. On the 

other hand, other studies focused on individual habitat selection have found that in some 

conditions, sage-grouse select more rugged terrain than expected, especially in marginal 

habitat (Dinkins et al. 2014, Beers and Frey 2022a). Like those, this study found that 

sage-grouse in some cases select more rugged terrain than expected. This may be in part 
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because some of the more heterogeneous topography in these study areas tended to be 

near valley edges, where sage-grouse appeared to use taller and denser land cover (trees 

and dense sagebrush) for thermal refuge. However, the fact that measures of topographic 

heterogeneity were often among the most important variables in the RF models shows 

that the terrain itself also featured in sage-grouse selection. It may be that moderately 

rugged terrain fosters snow deposition, accumulation, and retention in winter and spring 

(Winstral et al. 2002, Jost et al. 2007). In cold extremes, sage-grouse could use that snow 

as thermal cover. That retained snow may then allow the persistence of more mesic 

microhabitat during summer. My study was focused at smaller scales and did not sample 

from a large enough area to include the mountainous terrain surrounding the study areas 

that might have been defined as available habitat in a 2nd or 1st order selection process, 

which may have allowed me to detect the effects of topography on habitat selection at 

fine scales. 

It is important to note that in my models I did not use known temperature data at 

the exact location of each sage-grouse GPS detection. I also did not estimate temperature 

at each of those points based on interpolating temperature between the nearest data 

loggers. Instead, I used modeled outputs that represent detected trends of temperature 

within each study area and season, hypothesizing that sage-grouse selection trends will 

correspond to those of temperature. This may mean that these temperature data lack 

precision in their interpolation and there would be a benefit to implementing a 

temperature interpolation method that allows us to model the impacts on individual sage-

grouse movements. In the case of both summer heat and winter cold, when sage-grouse 

make selections to avoid thermal stress, they are likely to experience even more extreme 
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temperatures than I detected. I intentionally positioned data loggers to avoid direct sun 

exposure and removed data points where the logger nonetheless received direct sunlight. 

Yet, sage-grouse experience heating from direct sunlight and must make decisions to 

avoid it if stressed, seeking shade from land cover or otherwise moving to a cooler area, 

such as by changing elevation or habitat type. Similarly, in both sites there were some 

data loggers that appeared to have been covered in snow for periods of the winter given 

their small diel range in light intensity detected compared to that of other loggers. 

Because the data loggers were therefore insulated, these data likely do not capture all of 

the coldest events, and modeled Winter minimum temperature may be higher than what 

occurred. However, the loggers also likely reflect the temperatures that sage-grouse 

experience, as they are known to burrow into snow for shelter during extreme winter 

events (Beck 1977, Back et al. 1987).  

 
Conservation implications 

My findings may point toward a mechanism limiting the extent of the sage-grouse 

distribution on their warm range margin—inadequate refuge from thermal stress and a 

cryptic fragmentation that inadequacy creates. In both Buckskin and Steptoe, there are 

large areas of contiguous sagebrush. In Buckskin, those areas are mostly at lower 

elevations within Buckskin Valley and the cooler, high elevation available habitat is 

dominated by trees: pinyon pine, juniper, Gambel oak, mountain mahogany, and some 

aspen. In Steptoe, there are much larger patches of contiguous sagebrush in both the 

valley bottom and in a few patches at mid to upper elevations that have more area far 

from dense tree cover. While Steptoe grouse avoided tree cover during high summer 

temperatures, generally selecting habitat more than 1800 m from trees, in Buckskin there 
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is little area that is more than 800 m from tree cover. Therefore, Steptoe sage-grouse have 

more habitat in which to escape from thermal stress without incurring greater predation 

risk, while in the Buckskin site they more often choose to shelter in riskier habitat. While 

sage-grouse in some areas of Steptoe likely also face that tradeoff, that valley is much 

larger and there is more area where sage-grouse do not have to choose between thermal 

stress and predation risk. Buckskin may therefore act as a portent for what may occur in 

Steptoe given continued warming, sagebrush loss, and conifer encroachment. 

Sage-grouse have been observed using trees in the past or using areas with tree 

cover great enough to reduce survival (Baruch-Mordo et al. 2013, Coates et al. 2017, 

Beers and Frey 2022a), but the reason for that risky choice has been unclear. A potential 

explanation suggested by my results is that in areas where temperature is limiting, 

especially in summer heat and fragmented habitat, sage-grouse may be impelled to incur 

the risk of predation to avoid thermal stress. 

In contrast with the long-term climate data from PRISM, my data indicated that 

Utah’s Buckskin Valley is marginally warmer than Nevada’s Steptoe Valley. In 

combination with the fact that my results suggest that sage-grouse respond to extreme 

operative temperatures in habitat selection, this underscores the fact that temperature 

varies at multiple scales, and that it is potentially hazardous to infer fine-scale processes 

in either temperature or wildlife response to it based on larger patterns (Gillingham et al. 

2012, Gollan et al. 2015). Instead, studies should evaluate potential predictor variables at 

more biologically relevant scales. Though preference at fine scales for moderate 

temperatures has been demonstrated for other potentially-threatened species and 

environments (Scherrer and Korner 2011, Varner and Dearing 2014), including for 
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greater prairie chicken (Hovick et al. 2014, Londe et al. 2021), it has not been 

demonstrated for greater sage-grouse. Sage-grouse in the southern great basin are likely 

to face a future with a more xeric environment and declining sagebrush cover 

(Tredennick et al. 2016, Kleinhesselink and Adler 2018). Because sagebrush is sensitive 

to climate (Schlaepfer et al. 2014, Tredennick et al. 2016, Renwick et al. 2018), as a 

sagebrush obligate, sage-grouse will be negatively impacted by its range retracting along 

the southern range margin. Their range limit, therefore, may be defined by a combination 

of sagebrush cover, exposure to extreme heat, and the extent of trees. 

As the climate continues to change, it will be important to identify or even foster 

potential microrefugia for sage-grouse. Hotter summers and less sagebrush cover will 

likely make their current southern range margin even less tenable through thermal stress 

and loss of forage. Compounded by increased threat of avian predation due to ongoing 

pinyon-juniper encroachment and potential ecological traps (Coates et al. 2017, Pratt and 

Beck 2021), sage-grouse will face greater threats in the future where thermal stress drives 

them to make risky habitat selection. Even on their fragmented southern range margin, 

there may be some suitable microrefugia or holdouts as climate changes if there are large 

enough areas of contiguous sagebrush and some decoupling from regional climate at 

local scales (Dobrowski 2011, Hannah et al. 2014). Yet that is only if the limiting 

climatic factors for sage-grouse decouple from regional trends in the landscapes they 

occupy and if ecosystem managers take steps to foster suitable microhabitats (Hylander et 

al. 2015, Selwood et al. 2019). That may mean adopting a comprehensive, pragmatic 

approach to identify potential microrefugia (Ashcroft et al. 2012), evaluate ecosystem 

resistance and resilience (Chambers et al. 2007, Ricca et al. 2018), and assess local to 
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regional scale factors to determine what actions are appropriate in different areas of sage-

grouse habitat (Doherty et al. 2016, Lynch et al. 2021). For sage-grouse, that may mean 

creating some areas of mesic resources to offer thermal refuge during extreme heat 

(Donnelly et al. 2018). Ironically, it may also entail leaving some tree cover where sage-

grouse will be exposed to thermal stress and do not have other adequate cover. Conifer 

removal efforts should prioritize areas where sage-grouse are likely to experience thermal 

stress and do not have shelter from avian predators. In particular, sage-grouse would 

likely be most vulnerable during thermal extremes in flatter, more open terrain with less 

intact sagebrush patches where they are less able to hide from avian predators (Dinkins et 

al. 2017). For that purpose, lone trees would likely remain dangerous and provide little 

shelter, but small clusters of dense trees could be useful. 

 
Conclusion 

In this study I identified when temperature impact sage-grouse habitat selection 

and described their response to mitigate thermal stress. Though this has been a focus of 

study for other species of conservation concern, this is the first study to address 

temperature effects on sage-grouse habitat selection at a fine scale. I found that extreme 

temperatures may be limiting, but that sage-grouse response to those temperatures likely 

depend on what refuge habitat is available. In the larger study area with greater extents of 

contiguous sagebrush, marginally cooler temperatures, and more patches of sagebrush at 

higher elevations, sage-grouse tended to select those patches during high summer 

temperatures. In the smaller study area with less apparent refuge, sage-grouse used areas 

close to trees when temperatures were most extreme. Selection depends on the local 

environment and always involves tradeoffs—in this case it appears there may be some 
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threshold in the combination of thermal exposure and sagebrush availability beyond 

which sage-grouse are more likely to risk exposure to avian predators. This suggests 

thermal stress contributing to cryptic fragmentation as a mechanism limiting greater sage-

grouse in areas of their southern range margin and shows that ecosystem management in 

the Great Basin must account for regional and local factors of climate and sagebrush loss 

and fragmentation to protect the sagebrush and its imperiled species into the future. 
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FIGURES AND TABLES 

Table 3.1. Mean temperatures (°C) in each study area and season and the p-value for a t-
test evaluating the differences in temperatures between study areas.  
Season Steptoe mean Buckskin mean p-value 

All 1.85 3.50 <0.0001 

Autumn 1.83 3.48 <0.0001 

Winter -11.32 -10.02 <0.0001 

Spring -2.39 -1.77 <0.0001 

Summer 13.92 15.81 <0.0001 
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Table 3.2. Model performance for each Study Area – Season combination, including and 
excluding temperature covariates, measured by true skill statistic (TSS), Cohen’s kappa, 
sensitivity, correlation in used-habitat calibration (UHC), and the mean of those metrics. 
Mean performance difference shows the mean difference in model performance for a 
Study Area – Season model when including temperature covariates compared to 
excluding them. 
 

Study 
Area Season Temperature 

covariates TSS Kappa Sensitivity UHC 
correlation 

Mean 
Performance 

Mean 
Performance 
Difference 

Steptoe Autumn Yes 0.6988 0.6825 0.8544 0.9516 0.7968 
0.0636 

Steptoe Autumn No 0.5792 0.5492 0.8190 0.9853 0.7332 

Steptoe Winter Yes 0.7125 0.7024 0.7854 0.9423 0.7857 
0.0518 

Steptoe Winter No 0.6271 0.6049 0.7387 0.9648 0.7339 

Steptoe Spring Yes 0.6389 0.6289 0.8594 0.9606 0.7720 
0.0539 

Steptoe Spring No 0.5640 0.5312 0.8248 0.9523 0.7181 

Steptoe Summer Yes 0.7017 0.7298 0.8429 0.9501 0.8061 
0.0599 

Steptoe Summer No 0.6221 0.6321 0.7861 0.9446 0.7462 

Buckskin Autumn Yes 0.7053 0.7284 0.9012 0.9659 0.8252 
0.0143 

Buckskin Autumn No 0.6937 0.8089 0.7820 0.9590 0.8109 

Buckskin Winter Yes 0.7269 0.8080 0.8213 0.9559 0.8280 
0.0038 

Buckskin Winter No 0.7239 0.7822 0.8579 0.9327 0.8242 

Buckskin Spring Yes 0.8358 0.6759 0.9318 0.9154 0.8397 
0.0250 

Buckskin Spring No 0.8160 0.7109 0.8349 0.8970 0.8147 

Buckskin Summer Yes 0.9224 0.9123 0.9550 0.9713 0.9403 
0.0844 

Buckskin Summer No 0.8269 0.8349 0.8215 0.9401 0.8559 

  



129 
 

Table 3.3. Top five most important variables for each Study Area – Season combination 
model with and without temperature covariates, measured by the mean decrease in Gini 
index (node impurity). The possible variables included temperature minimum, maximum, 
and difference (Tmin, Tmax, Tdiff); topographic position index (TPI) and topographic 
heterogeneity index (THI) at scales of 50 m, 200 m, and 400 m; sagebrush patch core 
area index (CAI) and contiguity (CONTIG); distance to tree cover (TREEDIST); and 
density of tree cover (TREEDEN) within 400 m and 800 m. 
Study 
Area 

Season Temperature 
covariates 

Top five important variables 

Steptoe Autumn Yes Tmin, Tmax, Tdiff, TREEDIST, CONTIG 

Steptoe Winter Yes Tmin, Tdiff, TREEDEN800, Tmax, THI400 

Steptoe Spring Yes Tmax, Tdiff, TREEDIST, Tmin, THI400, THI200 

Steptoe Summer Yes Tmin, Tdiff, TREEDIST, CONTIG, THI400 

Steptoe Autumn No TREEDIST, THI400, THI200, TREEDEN800, CONTIG 

Steptoe Winter No TREEDEN800, THI400, TREEDEN400, TREEDIST, 

THI200 

Steptoe Spring No TREEDIST, THI400, THI200, TPI400, TREEDEN800 

Steptoe Summer No TREEDIST, THI400, CONTIG, TREEDEN800, THI200 

Buckskin Autumn Yes CONTIG, TREEDEN800, Tmin, TREEDEN400, TREEDIST 

Buckskin Winter Yes Tmin, Tdiff, TREEDEN800, Tmax, THI400 

Buckskin Spring Yes CONTIG, TREEDEN800, TREEDIST, Tmin, Tdiff 

Buckskin Summer Yes Tmin, Tmax, Tdiff, TREEDIST, CONTIG 

Buckskin Autumn No CONTIG, TREEDEN800, TREEDEN400, TREEDIST, 

THI400 

Buckskin Winter No TREEDEN800, CONTIG, TREEDEN400, TREEDIST, 

THI400 

Buckskin Spring No CONTIG, TREEDEN800, TREEDIST, TREEDEN400, 

THI400 

Buckskin Summer No CONTIG, TREEDEN400, TREEDEN400, TREEDIST, 

THI400 
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Figure 3.1. Study area locations in the western United States—Steptoe Valley, Nevada 
and Buckskin Valley, Utah—marked in dark blue with a minimum convex polygon 
around sage-grouse GPS data points collected there June 2019 – November 2020. 
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Figure 3.2. Marginal effect of average daily maximum temperature on sage-grouse 
habitat selection in Buckskin Valley, Utah across seasons, measured by partial 
dependence. Partial dependence measures the marginal effect of one covariate on the 
response variable when the effects all other covariates are held at their mean value. A 
higher partial dependence indicates a higher probability of selection. 
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Figure 3.3. Marginal effect of average daily maximum temperature on sage-grouse 
habitat selection in Steptoe Valley, Nevada across seasons, measured by partial 
dependence. Partial dependence measures the marginal effect of one covariate on the 
response variable when the effects all other covariates are held at their mean value. A 
higher partial dependence indicates a higher probability of selection. 
 
. 
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a) 

 
b) 

 
Figure 3.4. Marginal effect of average daily minimum temperature on sage-grouse habitat 
selection in a) Buckskin Valley, Utah and b) Steptoe Valley, Nevada across seasons, 
measured by partial dependence. Partial dependence measures the marginal effect of one 
covariate on the response variable when the effects all other covariates are held at their 
mean value. A higher partial dependence indicates a higher probability of selection. 
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Figure 3.5. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and distance to tree cover on sage-grouse habitat selection during summer in 
Buckskin Valley, Utah. 
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a) 

 
b) 

 
Figure 3.6. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and a) sagebrush patch contiguity index (CONTIG) and b) sagebrush patch 
core area index (CAI) on sage-grouse habitat selection during summer in Buckskin 
Valley, Utah. 
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Figure 3.7. Marginal effects (partial dependence: PD) of average daily minimum 
temperature and distance to tree cover on sage-grouse habitat selection during winter in 
Buckskin Valley, Utah. 
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Figure 3.8. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and distance to tree cover on sage-grouse habitat selection during summer in 
Steptoe Valley, Nevada. 
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Figure 3.9. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and sagebrush patch core area index (CAI) on sage-grouse habitat selection 
during summer in Steptoe Valley, Nevada. 
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a) 

 
 
b) 

 
Figure 3.10. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and a) sagebrush patch contiguity index (CONTIG) and b) sagebrush patch 
core area index (CAI) on sage-grouse habitat selection during summer in Buckskin 
Valley, Utah. 
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a) 

 
b) 

 
Figure 3.11. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and distance to trees on sage-grouse habitat selection in Buckskin Valley, 
Utah during a) autumn and b) spring.  
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a) 

 
b) 

 
Figure 3.12. Marginal effects (partial dependence: PD) of average daily maximum 
temperature and topographic heterogeneity in a 400 m window on sage-grouse habitat 
selection during summer in a) Buckskin Valley, Utah and b) Steptoe Valley, Nevada. 
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CHAPTER IV 

OPTIMIZED RANDOM FORESTS OUTPERFORM SIMPLE RESOURCE 

SELECTION FUNCTIONS AND REVEAL NOVEL HABITAT  

RELATIONSHIPS FOR GREATER SAGE-GROUSE 

ABSTRACT 

Wildlife habitat selection analysis (HSA) is an invaluable tool to understand 

wildlife-habitat associations, identify mechanisms driving distributions or population 

processes, and inform conservation and management. Resource selection functions 

(RSFs) have been the most common method of HSA for two decades. However, RSFs 

have limitations; they can be difficult to fit to nonlinear relationships and assume 

independence of samples and no collinearity between covariates. This suggests utility in 

exploring other methods for HSA. Among the methods that have been more recently used 

is random forest (RF), a nonparametric method that is able to model nonlinear 

relationships and interactions and does not assume independence of samples. Here, I 

optimized RF for HSA and compared its findings and performance in predicting out-of-

sample data with those of RSFs using >116,000 GPS locations for greater sage-grouse 

(Centrocercus urophasianus) in four study areas in southern Utah and Nevada. I found 

that RF outperformed RSF in predicting both withheld data from within the study area 

used for model training and data from each other study area. I also found that RF detected 

nonlinear relationships that were obscured in the RSFs. My findings suggest that when 

used appropriately, RF is a valuable tool to better inform wildlife conservation and 

management decisions and RF should be considered when selecting methods for HSA, 
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especially when nonlinear relationships are hypothesized, interactions are likely, and 

there is a large chance for autocorrelation between samples. 

 
INTRODUCTION 

The processes defining wildlife habitat requirements function at multiple scales 

(Wiens 1989, DeCesare et al. 2012, Vale et al. 2014, McGarigal et al. 2016). While 

species distribution models (SDMs) are useful tools to understand large-scale 

associations, wildlife habitat selection research is essential to more precisely understand 

the factors driving species distributions. Currently, the most common way to model 

wildlife habitat selection is to use resource selection functions (RSFs), an implementation 

of conditional or mixed effects generalized liner models, to compare the characteristics of 

habitat used by animals to that available to them (Manly et al. 2002, Johnson et al. 2006, 

Lele et al. 2013, McDonald 2013, Northrup et al. 2013). These are effective and versatile 

models; however, like any analysis tool, they have limitations. In particular, the simplest 

form of RSFs assume independence of samples and no collinearity between independent 

variables and are more difficult to fit if a nonlinear relationship exists, all of which may 

make them imperfect for analyzing habitat selection and species distributions. There has 

been considerable work to address those potential issues, including methods to allow 

researchers to better account for nonlinear effects and interactions, including by using 

higher-order polynomials, generalized additive models (GAMs), or multivariate adaptive 

regression splines (MARS) (Elith et al. 2006a, Aarts et al. 2013, Michelot et al. 2019, 

Avgar and Betini 2020, Lazenby et al. 2021, Northrup et al. 2022), that have been 

invaluable in advancing analyses of animal habitat selection. However, many of those 

methods require more advanced technical expertise to implement than the simple RSF 
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accessible to most practitioners and there is no clear consensus on the best way to 

manage RSF shortcomings. Therefore, it is likely important to evaluate other means to 

study habitat selection and continue to add to the toolbox of potential analytical methods. 

Among the many methods for analyzing wildlife-habitat relationships are several 

machine learning algorithms such as random forests (RF), artificial neural networks 

(ANN), support vector machines (SVM), and gradient boosting methods. These are 

relatively new to ecology and have been critiqued for reduced interpretability, but have 

been gaining recognition as powerful and efficient tools for many areas of ecological 

research (Elith et al. 2006a, Cutler et al. 2007, Olden et al. 2008, McDonald et al. 2013, 

Stupariu et al. 2021), and there have been many efforts to “demystify” machine learning 

for applications in ecology in both their use and interpretation (Thuiller et al. 2003, Elith 

et al. 2006a, Leathwick et al. 2006, Olden et al. 2008). Machine learning techniques tend 

to be well-equipped to handle large, chaotic datasets with the nonlinear effects and 

interactions abundant in ecology (Recknagel 2001, Cutler et al. 2007, Cushman and 

Huettmann 2010, Kampichler et al. 2010, Cushman and Wasserman 2018). Also, many 

have advantages over traditional statistical methods, as they do not have the same 

assumptions of these traditional methods that ecologists are sometimes forced to violate 

(Recknagel 2001, Cutler et al. 2007, Kampichler et al. 2010).  

 Compared to a simple RSF, some machine learning methods allow greater 

flexibility while not precluding rigorous hypothesis testing. RF is one such relatively 

intuitive machine learning model that is gaining attention in ecological studies. RF is a 

nonparametric, tree-based ensemble learning method that builds on decision trees to 

improve on the performance of individual trees (Breiman 2001) and there are many 
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available methods to interpret the results and use the models to explain ecological 

phenomena (Ryo et al. 2020). RF has been used effectively to analyze animal habitat 

selection and species distributions and performs well in predicting new data (Kampichler 

et al. 2010); furthermore, in previous work RF has outperformed conventional methods 

like RSF in both descriptive and predictive capacity (Evans and Cushman 2009, Carrasco 

et al. 2014, Doherty et al. 2016, Severson et al. 2017b, Shoemaker et al. 2018, Reisinger 

et al. 2021a, Shanley et al. 2021). 

 RF is especially useful in ecology when we anticipate nonlinear effects and 

interactions between covariates (Cutler et al. 2007). Because RF makes no assumptions 

about data distribution, error structure, or independence of samples, it does not impose a 

priori model selection can effectively describe variability in environmental covariate 

impacts without sacrificing predictive capacity when tuned appropriately. RF may also be 

suited to these sorts of analyses because of the fundamentally nonlinear nature of niches 

in covariate space (Cushman et al. 2010). Therefore, RF is also a particularly valuable 

tool in systems where there is little wildlife location data (Mi et al. 2017), where habitat 

selection is expected to vary over the extent of the study (Doherty et al. 2016), and when 

fragmentation or range edges make heterogeneous effects likely (Baruch-Mordo et al. 

2013, Cushman et al. 2017).  

 
Study system 

Greater sage-grouse (Centrocercus urophasianus, hereafter “sage-grouse”) are 

sagebrush (Artemisia sp.) obligates threatened by habitat loss and fragmentation (Braun 

1998, Connelly et al. 2000). In evaluating sage-grouse habitat associations, many 

different methods have been successfully used to identify the most important 
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environmental conditions at various scales (Sandford et al. 2017, Picardi et al. 2020, 

2021). At regional and range-wide scales, there are clearly established habitat needs for 

population persistence: large, unbroken tracts of sagebrush with minimal fragmentation 

by human land use (e.g., agriculture), forest, desert, grassland, or overly rugged 

topography (Aldridge et al. 2008, Knick et al. 2013). However, there is considerable 

variety in the microhabitat selected by individuals across sage-grouse distribution, which 

suggests variability in both the limiting environmental factors and the selection for 

available habitat and food resources. This underscores the need to make management and 

conservation decisions based on range-wide, regional, and local environmental conditions 

(Doherty et al. 2010b, 2016, Fedy et al. 2014, Smith and Olsen 2020). It is clear that 

sage-grouse habitat selection varies regionally (Doherty et al. 2016, Dahlgren et al. 2019, 

Picardi et al. 2020), so it is critical to assess the factors driving habitat selection and 

suitability in different areas, and especially along range margins (Vale et al. 2014). Along 

their southern range margin, sage-grouse are exposed to particularly fragmented and low-

quality habitat (Miller and Eddleman 2001). Differences in selection across sage-grouse 

distribution are critical to identify, as they will tie directly to different habitat limitations 

for disparate populations and varying probabilities of extirpation (Aldridge et al. 2008, 

Coates et al. 2021). 

Though sage-grouse are sagebrush obligates, they also require other vegetation 

types seasonally, and there is likely a nonlinear impact of sagebrush cover on habitat 

quality (Drut et al. 1994, Connelly et al. 2000, Dahlgren et al. 2019). There are also likely 

thresholds in sage-grouse response to tree cover (Baruch-Mordo et al. 2013, Prochazka et 

al. 2017, Severson et al. 2017b) and temperature (Beers and Frey 2022b). The level of 
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fragmentation and the extreme range of temperatures existing in the sagebrush 

communities of the southern Great Basin suggest that RF might be an appropriate 

technique to analyze sage-grouse habitat selection there.  

The purpose of this study was to determine if RF is an appropriate tool for 

modeling greater sage-grouse habitat selection along the patchy, fragmented southern 

edge of its distribution, using a conventional RSF for comparison. For this comparison of 

HSAs, I evaluated the factors of land cover and topography that impact sage-grouse 

habitat selection. In particular, I examined the ways in which topography and sagebrush 

patch characteristics influence selection in the presence of trees. I hypothesized that RF 

would detect nonlinear effects missed by the simple RSFs, especially thresholds beyond 

which selection would change markedly. I also hypothesized that RF would outperform 

RSF in predicting out-of-sample data. The ability to more precisely describe factors 

driving sage-grouse habitat selection at local scales will be critical for developing the 

most effective conservation efforts (Smith and Olsen 2020). By testing the strength of RF 

models in this system, I aim to provide a means to leverage sage-grouse location data for 

better place-based conservation and management and contribute to ongoing work 

expanding the toolbox for HSAs.  

 
METHODS 

Study region 

My study region included four distinct study areas (Figure 4.1) along the sage-

grouse southern range margin in the southern Great Basin of Nevada and Utah, described 

as Great Basin-Colorado Plateau sagebrush semi-desert; this region is more xeric than 



148 
 

sage-grouse habitat in most of their distribution (West 1983b, Miller and Eddleman 

2001). I worked in four study areas, each one a valley bounded by mountains, 

characteristic of the Basin and Range province. In Utah, the sites were in the Bald Hills, 

Hamlin Valley, and Panguitch sage-grouse management areas (SGMAs; Utah Public 

Lands Policy Coordination Office 2019). In Nevada, the study areas were in northern 

Hamlin Valley in the Lincoln population management unit (PMU) and in the 

Cave/Steptoe PMU (Emm et al. 2019). The elevation in each study area ranged from 

1500 – 2600 m in the Bald Hills, 1800 – 2800 m in Cave, 1800 – 2700 m in Hamlin, and 

2000 – 2800 m in Panguitch. 

Sagebrush in this region can be dominant in some areas (>90% of land cover), 

especially in the lowest elevation, which are often xeric areas where A. nova and A. 

arbuscula were most common. Elsewhere, A. tridentata wyomingensis and A. tridentata 

vaseyana were most common. Where land cover is not dominated by sagebrush, common 

plant cover includes rabbitbrush (Chrysothamnus spp. and Ericameria spp.), horsebrush 

(Tetradymia spp.), bitterbrush (Purshia tridentata), Mormon tea (Ephedra spp.), 

winterfat (Krascheninnikovia lanata), native bunchgrasses, cheatgrass (Bromus 

tectorum), and a variety of grasses and forbs. In this region, sage-grouse habitats are 

threatened by mixed forests of pinyon pine (Pinus edulis and P. monophyla) and juniper 

(Juniperus sp.) encroaching into historic sagebrush communities, which both fragments 

the sagebrush cover and increases the risk of depredation by avian predators (Doherty et 

al. 2010b, Baruch-Mordo et al. 2013, Coates et al. 2017, Severson et al. 2017a, 2017b). In 

high elevation areas of the study region, woodlands were the most common cover, 

including quaking aspen (Populus tremuloides), Gambel oak (Quercus gambelii), 
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mountain mahogany (Cercocarpus sp.), juniper, pinyon pine, spruce (Picea sp.), and fir 

(Abies sp.). Many high elevation areas also include patches of sagebrush. 

 
Environmental data 

 In this study, I used metrics of topography and land cover to evaluate my 

hypotheses. I downloaded land cover data from the Landscape Fire and Resource 

Management Planning Tools Project (LANDFIRE; Rollins 2009) and derived from those 

data five metrics of the land cover most important to sage-grouse. Because sagebrush 

patch size and configuration can influence sage-grouse persistence or extirpation 

(Wisdom et al. 2011), I calculated metrics of sagebrush patch contiguity (CONTIG) and 

core area index (CAI) using the R package landscapemetrics (Hesselbarth et al. 2019). It 

is well established that tree cover negatively impacts sage-grouse lek occupancy and 

habitat selection (Aldridge et al. 2008, Baruch-Mordo et al. 2013, Prochazka et al. 2017, 

Coates et al. 2021), but there is some evidence for sage-grouse exhibiting maladaptive or 

high risk selection and for potential thresholds and interactions between environmental 

variables in sage-grouse response to trees (Coates et al. 2017, Cutting et al. 2019, Pratt 

and Beck 2021, Beers and Frey 2022a). I therefore calculated the distance to any pixel of 

a tree or woodland cover type (TREEDIST). I also calculated the density of those pixels 

within 400 m (TREEDEN400) and 800 m (TREEDEN800) moving windows for metrics 

of overall tree cover nearby. 

Evidence for sage-grouse response to terrain is mixed. Most evidence suggests 

that flatter terrain is associated with greater sage-grouse survival, lek persistence, and 

habitat selection, but some evidence points to a potential role of topographic 

heterogeneity in providing cover from avian predators (Dinkins et al. 2014, Beers and 
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Frey 2022a). I built topographic metrics using a digital elevation model (DEM) of 10 m 

resolution using the R package elevatr. To capture potential impacts of terrain, I included 

metrics of both topographic position and heterogeneity. Topographic Position Index (TPI: 

Jenness et al. 2013) measures the degree to which a pixel in a DEM is higher or lower 

than the pixels around it within a user-defined distance. A low value indicates a pixel is 

lower than those around it (e.g., a valley, sink, ravine), a high value corresponds to a 

geographic high point (e.g., a peak or ridge), and a value of zero describes flat ground or 

where a pixel is equally higher and lower than the pixel around it (e.g., on a slope that is 

uniform within the user-defined window). Topographic Heterogeneity Index (THI) 

measures the overall ruggedness of terrain in an area by calculating the sum of the 

absolute value of every pixel’s TPI value within the same user-defined window size. In 

this study, I used window sizes of 50 m, 200 m, and 400 m. 

 
Used and available data 

 I used GPS telemetry data collected 2014-2020 from sage-grouse fitted with 

rump-mounted, solar-powered GPS transmitters (Geotrak, Inc., Apex, NC; Microwave 

Telemetry Inc., Columbia, MD). These data came from capture efforts similar to Giesen 

et al. (1982). After being captured, grouse were weighed, sexed, aged, and checked for 

injury. The GPS transmitters were programmed to collect four points each day: dawn, 

midday, dusk, and night. After removing data points that were clear outliers, from within 

the first 48 hours of handling, and from individuals with fewer than 100 successful fixes, 

the dataset included 116,310 points from 96 sage-grouse (median n = 1398 

locations/sage-grouse).  
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 Because I analyzed habitat selection by individual sage-grouse, I treated this study 

as 3rd order habitat selection (Johnson 1980). For each individual, I estimated 90% home 

ranges using a kernel density estimator with the default settings from the R package 

adehabitatHR (Calenge 2017). Within each home range, I sampled the available 

environment at a ratio of ten available points for every used point, which created a dataset 

of more than 1,339,000 availability data points. 

Sage-grouse habitat requirements vary seasonally (Connelly et al. 2000, Dahlgren 

et al. 2016); therefore, I split the dataset into three seasons relevant to sage-grouse: 

Breeding (March – May), Summer (June – September), and Fall/Winter (October – 

February). Then I fit models for each combination of study area and season and for both 

the entire study region and each study area across all seasons, yielding a total of 16 model 

conditions. 

 
Resource selection functions 

I analyzed sage-grouse habitat selection by two different methods. The first is the 

most common in animal habitat selection studies: a mixed effects generalized linear 

regression, in this context called a resource selection function (RSF) (Boyce et al. 2002, 

Gillies et al. 2006, Johnson et al. 2006). This is the most straightforward means to 

implement an RSF; though there are many techniques to explicitly account for 

nonlinearities and interactions, they tend to require more statistical skill and a priori 

assumptions. First, I standardized covariates by their standard deviation for use in the 

RSF models. I used individual sage-grouse ID as a random effect with a random 

intercept, fitted using the R package lme4 (Bates et al. 2012). I selected the best fit 

models in an information theoretic framework using Akaike’s information criterion 
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corrected for small sample size (AICc) (Burnham et al. 2011). I excluded from 

consideration any models with excessive correlation between predictor variables (|r| > 

0.5) and dropped variables with a variance inflation factor greater than 10 (Naimi et al. 

2014). For each model I calculated the most important variable using the R package 

relaimpo (Gröemping and Lehrkamp 2021). 

 
Random forests 

 Though RF and other machine learning methods have been used with increasing 

frequency to analyze animal distributions and habitat selection and have outperformed 

conventional RSFs in the past, there is no apparent consensus about standard means of 

data preparation, model training, and model evaluation. Some have described best 

practices (e.g., Roberts et al. 2017, Cushman and Wasserman 2018, Zhang et al. 2019, 

Valavi et al. 2021), yet there are still many ways in which ongoing research efforts differ, 

and ways to improve habitat selection models using RF should be explored. 

This is not the first study to compare RF and RSF for habitat selection. 

Shoemaker et al. (2018) found that RF outperformed RSF in cross-validation and 

detected ecological effects not found by RSF. I chose RF in this study to further explore 

the best practices for using novel methods for habitat selection analyses and build on 

existing work. I also chose RF because it is among the machine learning methods that has 

performed well in ecological analyses, is intuitive to implement, and is easily interpreted. 

Because RF is fairly intuitive and easy to use, it is important to account for potential 

shortcomings that are not immediately obvious—implementing RF for used-available 

data carries some risks of overfitting, inaccurately sampling the environment, and 

improperly assessing model performance (Roberts et al. 2017). In this study I 
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implemented RF models to account for the hierarchical nature of habitat selection data 

and properly sample the available environment while maintaining a simple 

implementation to best evaluate RF’s utility as a HSA tool. 

 
Class imbalance 

One ongoing point of disagreement is the problem of class imbalance, especially 

for RF models, which tend to underperform with a large imbalance between classes of the 

response variable (Evans and Cushman 2009, Shabani et al. 2016). Habitat selection 

analyses begin as presence-only data and remains analogous in their methods (McDonald 

2013, McDonald et al. 2013). Because there is no natural ratio in used-available data, 

there are competing considerations for its design, including issues due to oversampling 

from one class of the response (Chen et al. 2004, MacKenzie 2005, Boyce 2006, Valavi 

et al. 2021).  

The function of the “available” data is to provide a meaningful representation of 

the environment animals could have chosen to compare against the locations they did 

select, which suggests sampling many times the number of “used” data points (Franklin 

2009, Renner et al. 2015). However, sampling large numbers of available points naturally 

creates considerable class imbalance and overlap in the environmental conditions of the 

used and available data, which can lead to poorer performance in developing rules to 

distinguish the two classes and to overfitting when deep trees are fit (Ali et al. 2013, 

Valavi et al. 2021). RF models are grown to minimize the error in predicting out-of-bag 

(OOB) data during model training. Yet with severe class imbalance, OOB error is 

minimized by focusing on accurately predicting mostly the majority class. This can yield 

poor results for habitat selection data, as the final model will be trained to reduce the 



154 
 

error predicting available habitat without describing the used habitat and the models are 

more likely to miss important ecological phenomena by chance (Ali et al. 2013). Further, 

oversampling may not accurately represent the choices wildlife face, as nearby pixels of 

high resolution likely do not represent meaningfully distinct selection options. 

One solution with imbalanced data is to induce a balanced dataset used in the RF, 

either by equal sampling (Barbet-Massin et al. 2012) or down-sampling (Chen et al. 

2004, Evans and Cushman 2009). In each method, many more availability points are 

sampled than used points (e.g., 10:1). In equal sampling, the available (background) 

points are repeatedly subsampled to an equal ratio with used points and used to grow 

multiple RF models, the outputs of which are then averaged. In this study I used an equal 

sampling method similar to that used by Khalilia et al. (2011) and Reisinger et al. (2021a) 

and recommended by Valavi et al. (2021). I repeatedly grew RFs with a different random 

subset of the available data points without replacement until all available points had been 

compared to the used data, then averaged the resulting RFs to create a form of balanced 

RF. 

 
Overfitting 

While RF is generally not prone to overfitting (Biau 2012), there are many ways 

to minimize the chance of doing so. One of those is by forcing the RF to build shallow 

trees so that each node is based on a larger sample size than the default algorithm, rather 

than making increasingly precise estimates in deep trees with decreasing sample size. I 

limited the depth of each tree in the RF by allowing the minimum node size to be tuned 

between 20 and 50 data points. 
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In RF classification, the default number of candidate covariates randomly selected 

at each node (mtry) is the square root of the total number of covariates. Having relatively 

few covariates in this study, I allowed mtry to vary in model tuning between 3, 4, 5, and 8 

randomly selected covariates, which reduces overfitting and produces more stable 

outcomes (Garzón et al. 2006). Though the RFs grew stable after a few hundred trees, I 

grew each RF to 1000 trees to be conservative. 

Another effective method to minimize the chance of overfitting is cross-validation 

during model training (Roberts et al. 2017, Liaw and Wiener 2018), which is common in 

habitat selection studies using RF (Vanbianchi et al. 2017, Heffelfinger et al. 2020, 

Reisinger et al. 2021b, 2021a, Shanley et al. 2021). I used a seven-fold leave-group-out 

cross-validation (LGOCV), where the data were grouped by individual sage-grouse 

(similar to Heffelfinger et al. 2020). As the RF is grown, each tree is trained on data from 

a random subset of individuals and tested on data from the remaining individuals. 

Grouping data by individual or meaningful group of individuals helps account for 

individual variation in habitat selection and minimizes the chance of testing the model’s 

performance on data closely associated with data used to train it (Roberts et al. 2017, 

Zhang et al. 2019, Aldossari et al. 2021). This step also makes the RF models more 

similar to the mixed effects GLM used in a simple RSF with individual habitat selection. 

 
Model evaluation 

 I evaluated model performance both within each study area and across study 

areas. I first trained each RF using a random sample of 70% of the dataset. Then, I tested 

the average LGOCV model’s capacity to predict the withheld 30% data within the same 

study area. Because part of this study was focused on the variation in habitat selection, 
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this first step was useful to describe the transferability of models within each study area 

and provide greater certainty when describing the differences between study areas. I 

tested each model’s capacity to predict the withheld data in every other study area, which 

provides a truly out-of-sample dataset while still granting insight into ecological 

processes and the variation in habitat selection across this fragmented range margin. For 

comparison with the RF models, I performed the same model evaluation across study 

areas using the RSF models. 

Many RF habitat selection studies use the area under the receiver operator 

characteristic curve (AUC), a measure of the tradeoff between model sensitivity and 

specificity, to evaluate the model performance. However, AUC has lately been 

discouraged for evaluating models based on used-available data (see Austin 2007, Lobo 

et al. 2008, Fieberg et al. 2018, Shabani et al. 2018). Alternatively, the true skill statistic 

(TSS) is a measure of the model’s combined performance in both specificity and 

sensitivity and has been shown to be appropriate and useful with presence-only data, 

including when using RF (Allouche et al. 2006, Mi et al. 2017, Shabani et al. 2018, 

Yudaputra et al. 2020). TSS can theoretically range from -1 to 1, with 0 being a totally 

uninformative model. To evaluate models, I used the true skill statistic (TSS), in addition 

to comparing model sensitivity (ability to predict used location points), and the 

correlation coefficient in a used-habitat calibration, similar to (Fieberg et al. 2018).  

 
Model interpretation 

 To understand the impacts of the environmental covariates on sage-grouse habitat 

selection, I used different methods for the RSF and RF models. For the RSFs, I visualized 

the predicted probability of selection vs avoidance based on model estimates (Manly et 
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al. 2002). For the RFs, I used the R package pdp (Greenwell 2017) to calculate partial 

dependence of each covariate and the R package rfFC (Palczewska and Robinson 2015) 

to calculate feature contribution. Partial dependence measures the marginal effect of a 

covariate, calculating the predicted outcome in selection vs avoidance across the range of 

that covariate when the marginal effects of all other covariates in the model are held at 

their average value. In this study I used partial dependence plots to visualize interactive 

(two-way) effects on habitat selection. Feature contribution also measures the impact of a 

covariate on selection, but instead of averaging the effects of other covariates, feature 

contribution accounts for interactions with other covariates directly (Kuz’min et al. 2011, 

Palczewska et al. 2014). A positive value of feature contribution indicates that, at that 

value of a covariate, selection is more likely than avoidance. For example, a feature 

contribution of 0.1 indicates that selection is 10% more likely than would have been 

predicted by the RF model without that covariate. 

 
RESULTS 

Model performance 

 Within each study area, the RF models consistently performed better than the RSF 

models when predicting withheld data measured by TSS, model sensitivity, and used-

habitat calibration correlation (Table 4.1). Across all model combinations of study area 

and season, RF outperformed RSF. In predicting the withheld data from within study 

areas during model training, the TSS for RF models ranged from 0.579 to 0.767, values 

in the range suggesting fairly strong predictive performance (Landis and Koch 1977). 

The RSF models were weaker predicters though still somewhat informative, with TSS 
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values from 0.115 to 0.453. RF models also performed better as measured by sensitivity 

(0.806 – 0.966) and UHC correlation (0.804 – 0.934) compared to the RSF models’ 

sensitivity (0.564 – 0.776) and UHC correlation (0.610 – 0.839). The RSF and RF models 

in each study area tended to improve in model performance when using data from within 

a single season, though for the RSF models in Panguitch during Fall/Winter, and in 

Summer and Breeding seasons using all study areas, the TSS was slightly lower. The 

improvements in model performance of RF over RSF were greatest in Bald Hills and 

Cave study areas. While RF performance was fairly high across all study area – season 

combinations, RSF performance was notably higher in Panguitch (mean TSS = 0.433) 

than in the study area with the poorest performance, the Bald Hills (mean TSS = 0.143). 

 The differences between RF and RSF models were slightly smaller in their 

capacity to predict data from study areas outside where they were trained (Table 4.2). 

Still, RF performed better across all combinations of study area, with an average 

difference in performance of TSS = 0.339, sensitivity = 0.165, and UHC correlation = 

0.136. RF model performance was poorer than when tested on withheld data from within 

study areas, yet still suggested moderate predictive capacity (mean TSS = 0.496, mean 

sensitivity = 0.699, mean UHC correlation = 0.744). The best performance predicting 

data in other study areas was in the Cave RF model predicting Bald Hills data (mean of 

performance metrics = 0.738), followed by Bald Hills predicting Panguitch (mean 

performance = 0.675), Bald Hills predicting Cave (mean performance = 0.671) and 

Panguitch predicting Bald Hills (mean performance 0.665). The worst performing RF 

model was in the Panguitch model predicting Hamlin (mean performance = 0.575). 
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RSF model performance on predicting data in other study areas was likely only 

marginally informative (mean TSS = 0.157, mean sensitivity = 0.541, mean UHC 

correlation = 0.608). The best RSF performance was in the Cave model predicting 

Panguitch (mean performance = 0.499), Bald Hills predicting Panguitch (mean 

performance = 0.495), Cave predicting Hamlin (mean performance = 0.475), and Bald 

Hills predicting Cave (mean performance = 0.461). The RSF prediction with poorest 

performance was in Bald Hills predicting Hamlin (mean performance = 0.382). 

The greatest difference in model performance between RF and RSF models was 

when using the model built in Cave to predict Bald Hills data (difference in mean 

performance = 0.308), in Hamlin predicting Cave (difference in mean performance = 

0.264), and Hamlin predicting Panguitch (difference in mean performance = 0.251). 

Using RF instead of RSF made the smallest difference in Cave predicting Hamlin 

(difference in mean performance = 0.174). 

 
Covariate impacts 

 After excluding the variables with excessive collinearity or contribution to 

variance inflation, the RSF model with the lowest AICc for each study area included 

distance to trees (TREEDIST) and a combination of sagebrush cover and topographic 

metrics at several scales (Table 4.3). In each study area there was a decreasing probability 

of selection with increasing topographic heterogeneity and slope, but the effect of 

topographic position varied in the strength and trend (Figure 4.2). The probability of 

selection increased with increased topographic position in Hamlin Valley and the Bald 

Hills. In Cave Valley there was a weaker increase in probability of selection with 

increased topographic position index within 400 m and in Panguitch selection slightly 
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decreased with increasing topographic position (TPI400: β = -0.02). In each study area, 

the probability of selection decreased as tree density increased in both 400 m and 800 m 

windows and increased with the distance from trees (Figure 4.3).  

 The RF models detected many of the same trends as the simple RSFs, though 

there were important differences between their findings; the RFs showed notable 

nonlinear effects of tree cover, sagebrush patch characteristics, and topography compared 

to the available habitat that the RSFs did not. While both RSF and RF indicated that 

selection was less likely near trees and with greater tree cover, the RF models suggest 

that there are particular levels of tree cover where sage-grouse selection is higher than 

would be predicted by the RSFs (Figure 4.4). For the RFs in each study area, the 

probability of selection was highest at very low levels of tree cover. Yet the decrease in 

selection probability was inconsistent; in each study area sage-grouse were less likely to 

select habitat with 10 – 18% tree cover in an 800 m window (TREEDEN800, Figure 

4.4a) than they were to select habitat with greater tree cover. That threshold varied across 

study areas. Similarly, sage-grouse in all study areas but Hamlin were more likely to 

select habitat with 30 – 40% tree cover than 10% cover. There was also a nonlinear 

impact of distance to trees, where probability of selection generally increased with 

greater distance to trees in all study areas but Panguitch, but fell again or leveled off 

above a distance specific to that study area (Figure 4.4). For example, in Cave the 

probability of selection was greater at approximately 500 m from trees than at 1000 m. In 

Panguitch, selection probability was highest near trees and slowly decreased with 

distance to trees, with avoidance becoming more likely than selection at distances greater 

than 250 m. 
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 The RF models showed similar nuance in the impact of topography as they did for 

tree cover. In all study areas but the Bald Hills, the probability of selection was highest at 

a moderate level of topographic heterogeneity than in homogeneous topography (Figure 

4.5). In the Bald Hills, there was a generally decreasing trend in selection with increasing 

heterogeneity. Similarly, in the Bald Hills selection probability was higher in moderately 

high topographic position (e.g., small ridges) than in flat or low terrain, but the opposite 

was true in the three other study areas. The RFs also indicate that in some conditions, 

sage-grouse were more likely to select areas close to trees than would be predicted by the 

RSFs. When sage-grouse were close to trees (< 100 m), they were more likely to select 

terrain that was lower than the terrain around it and in sagebrush patches of greater core 

area and contiguity (Figure 4.6). 

 
Seasonality 

As in the results across study areas, the seasonal RSF models tended to find the 

same general trends as the RFs, but did not detect some of the perturbations within 

seasonal trends or showed weak effects in the opposite direction. While both the RF and 

RSF models showed a generally decreasing probability of selection with increased tree 

density for each season, especially above about 12% tree cover, the RSF models (Figure 

4.7) did not detect the same peaks in selection between 30% and 40% cover in each 

season that the RF models did (Figure 4.8). Instead, the RSF models showed a weaker 

effect of increasing tree density in summer than in the fall/winter or breeding seasons. 

There was also a variation in seasonal effects of tree cover across study areas. The RSF 

models showed that in Fall/Winter and Breeding seasons, probability of selection 

decreased with increasing tree cover in all study areas, yet during Summer selection 
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probability increased in the Bald Hills and Cave study areas (Figure 4.9). The RF models 

suggested a similar pattern, though they showed a local peak in selection in Bald Hills, 

Cave, and Panguitch during Summer at 30 – 45% tree cover, followed by rapid trends 

toward avoidance with greater tree density (Figure 4.10). 

Similarly, the RSF models did not detect the same thresholds in sagebrush patch 

size and configuration (Figure 4.11) as the RF models (Figure 4.12). The RFs detected 

the strongest selection for higher sagebrush core area index (CAI) and patch contiguity 

(CONTIG) in fall/winter, with an apparent threshold for increasing selection above CAI 

= 45% and CONTIG = 0.75 (Figure 4.12), while the RSFs showed a weak avoidance for 

high values of those sagebrush variables in fall/winter (Figure 4.11). The RSFs predicted 

weak selection for higher sagebrush CAI and CONTIG in summer and strong selection in 

the breeding season, while the RFs suggested a weak effect until a threshold, above 

which in summer selection decreased and in the breeding season increased. Further, both 

RSF (Figure 4.13) and RF (Figure 4.14) models showed different seasonal selection for 

sagebrush patches across study areas. Both showed that during summer, sage-grouse 

were less likely to select areas of high sagebrush patch contiguity in all study areas but 

Panguitch, though that trend in Panguitch was not as strong in the RFs. 

 
DISCUSSION 

Model performance 

The RF models performed very well within study areas, and moderately well 

across all study areas and seasons. Although the RF model across study areas selected 

similar variables, the results were not as robust as the RF for any single study area. RF 
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models consistently performed better than the conventional RSF model of the same study 

area – season combination. 

The RF models also performed well in predicting data from outside the study area 

where they were trained, suggesting a moderate degree of model transferability. Most 

notably, the RF models were consistently better in predicting out-of-sample data than the 

RSF models, despite the fact that other studies have reported poor performance and 

potential overfitting with a standard RF (Shabani et al. 2016). Despite past findings that 

RF has limitations when predicting out of sample data, many other studies have shown it 

has equal or superior performance in creating accurate range maps and predicting out of 

sample data compared to other methods, including with rare species and low sample size 

(Mi et al. 2017). In my study, while there was variation in which variables were selected 

as the most important across study areas, as well as among the specific thresholds and 

magnitudes of their impacts, each study area’s model suggests similar conclusions.  

In both RF and RSF, many of the same variables were selected by the models as 

important, but with differences in their effects. For example, increasing tree density 

within 800 m (TREEDEN800) in RF models in every study area had a generally negative 

effect on selection, though nonlinearly and with different small perturbations in each. For 

example, in each study area there was a local minimum in selection between 10% and 

18% tree cover within 800 m. Yet that minimum varied across study areas, as did the rate 

of increase in selection at increasing levels of tree cover. This suggests while sage-grouse 

respond to many of the same habitat features in the region of their southern range margin, 

they likely face different limiting factors depending on the local conditions. The ability to 

predict habitat selection across study areas was greater with RF than RSF models, similar 
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to Shoemaker et al. (2018) and Shanley et al. (2021). Therefore, while grouse likely 

respond to many of the same cues across their range (e.g., sagebrush cover, mesic 

habitat), regional variation in their environment drives them to respond to different 

thresholds in those important habitat characteristics. 

There is growing evidence for the benefits of using machine learning techniques 

like RF in habitat selection studies (Cai et al. 2014, Severson et al. 2017b, Shoemaker et 

al. 2018, Reisinger et al. 2021a, Shanley et al. 2021). When designed appropriately with 

biologically relevant variables and scales, RF models may be especially useful for place-

based analyses, both descriptive and predictive. Thresholds and other nonlinear 

relationships are common in ecosystems and my findings demonstrate the need to 

identify how habitat selection varies across species’ range. RF models are not prone to 

overfitting and deal better with both autocorrelation and variable correlation than many 

traditional methods while not sacrificing model transferability (Cutler et al. 2007, Farrell 

et al. 2019). Compared to other means of modeling nonlinear effects like GAMs, RF is 

also likely better able to detect complicated relationships and interactions, performs better 

predicting out-of-sample data, and may be especially useful for studying habitat 

specialists (Kosicki 2020, Valavi et al. 2022). It will be important to incorporate RF and 

other nonparametric methods into ecological research, especially where there are 

suspected nonlinear effects and region- or locality-specific thresholds. While RSF should 

continue to play an important role in analyzing habitat selection and other used-available 

data, especially at a broad scale (e.g. state or range-wide), it may be especially important 

to implement RF or other machine learning methods at range edges, in fragmented 

habitat, or in other marginal habitat. Continued focus at both regional and local scales 
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will better inform conservation and management and flexible methods like RF can be a 

valuable addition to HSAs. 

 
Implications 

It is well documented that sage-grouse populations are negatively impacted and 

distributions reduced by tree cover in their environment. My RSF models supported that 

finding. However, the RF models demonstrated greater nuance in sage-grouse response to 

tree cover, suggesting that there are conditions in which sage-grouse appear to tolerate 

greater tree cover or being nearer trees than is usually reported. In this region of sage-

grouse distribution, encroachment by pinyon-juniper forest into sagebrush habitat is 

common. It may be that, in these study areas that are already fragmented by mountains 

and marginal habitat (West 1983a, Miller and Eddleman 2001), sage-grouse have less 

available habitat in which to escape from the threats posed by tree cover and instead 

select habitat that provides visual cover from potential avian predators in those trees 

(Beers and Frey 2022a). The RF models suggest that sage-grouse may use both 

topography and contiguous sagebrush habitat as cover when they are near trees. Dinkins 

et al. (2014) also found that sage-grouse selected moderately rugged terrain and similarly 

suggested that behavior was to use topography as visual cover from avian predators. My 

simple RSF models did not detect that nonlinear effect of topography. While methods 

exist to model nonlinear relationships within RSFs or GAMs, they are likely more 

difficult for many users to implement than RF and do not perform as well in predicting 

out-of-sample data (Kosicki 2020, Valavi et al. 2022). 

 Our results also support the utility in exploring new methods to evaluate animal 

habitat selection, especially to account for local variation and better inform decision-
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making. The RF models performed outperformed the simple RSF models by each metric 

and allowed me to identify important interactions and nonlinear effects that were not 

detected by the RSF models. My findings imply local-scale variation in habitat selection 

exists that could inform sage-grouse and sagebrush habitat management and conservation 

decisions. This suggests that land managers should prioritize conifer removal treatments 

in flatter terrain and areas of lower sagebrush contiguity, where sage-grouse are unable to 

use those features as visual cover from avian predators (Beers and Frey 2022a). Were I to 

have used only simple RSFs in this study, I would have concluded that sage-grouse avoid 

rugged terrain and habitat near trees and would not have detected those details that can 

inform more precise, place-based management and conservation. The RF models may 

help identify potentially-critical thresholds in sage-grouse habitat selection that the RSFs 

did not detect and reinforce the need to study habitat selection and requirements at both 

local and regional scales. 

There are potential pitfalls in using RF to study habitat selection, especially due to 

class overlap and imbalance and clustered data that could either obscure or exaggerate 

trends. Habitat selection data often has autocorrelation and dependency structures that 

likely make the most basic form of RF ineffective (Roberts et al. 2017). However, if steps 

are taken to understand the data’s structure and account for these issues, its 

implementation can yield a nuanced and precise understanding (Valavi et al. 2021) and 

RF should be considered among the tools available to practitioners studying wildlife-

habitat associations. 
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FIGURES AND TABLES 

Table 4.1. Performance of resource selection function (RSF) and random forest (RF) models in predicting data withheld during model 
training. Model performance was evaluated using the true skill statistic (TSS), model sensitivity, and correlation in a used-habitat 
calibration (UHC).   

Method 

Resource Selection Function Random Forest 

Study 

Area Season TSS Sensitivity 

UHC 

correlation TSS Sensitivity 

UHC 

correlation 

All All 0.143 0.609 0.689 0.579 0.806 0.867 

All Fall/Winter 0.220 0.616 0.671 0.635 0.846 0.871 

All Breeding 0.124 0.594 0.703 0.604 0.818 0.849 

All Summer 0.115 0.586 0.724 0.589 0.804 0.881 

Bald Hills All 0.118 0.622 0.610 0.707 0.842 0.890 

Bald Hills Fall/Winter 0.175 0.633 0.655 0.767 0.952 0.924 

Bald Hills Breeding 0.129 0.659 0.678 0.719 0.966 0.934 

Bald Hills Summer 0.148 0.586 0.662 0.720 0.934 0.912 

Cave All 0.144 0.564 0.644 0.594 0.811 0.804 

Cave Fall/Winter 0.183 0.665 0.702 0.642 0.884 0.867 

Cave Breeding 0.341 0.675 0.725 0.638 0.871 0.817 

Cave Summer 0.155 0.597 0.693 0.629 0.855 0.811 
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Hamlin All 0.224 0.618 0.592 0.586 0.826 0.886 

Hamlin Fall/Winter 0.285 0.660 0.764 0.621 0.861 0.897 

Hamlin Breeding 0.270 0.681 0.749 0.648 0.849 0.892 

Hamlin Summer 0.244 0.659 0.774 0.61 0.825 0.906 

Panguitch All 0.429 0.755 0.827 0.595 0.834 0.873 

Panguitch Fall/Winter 0.401 0.776 0.832 0.603 0.844 0.885 

Panguitch Breeding 0.453 0.739 0.805 0.655 0.863 0.916 

Panguitch Summer 0.449 0.758 0.839 0.700 0.835 0.905 
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Table 4.2. Performance of resource selection function (RSF) and random forest (RF) models in predicting data in all study areas other 
than that used for model training. Model performance was evaluated using the true skill statistic (TSS), model sensitivity, and 
correlation in a used-habitat calibration (UHC).   

Method 
Resource selection function Random Forest 

Model 
training 

Model 
testing TSS Sensitivity 

UHC 
correlation TSS Sensitivity 

UHC 
correlation 

Bald Hills Cave 0.114 0.589 0.679 0.485 0.802 0.727 
Bald Hills Hamlin 0.111 0.492 0.544 0.442 0.663 0.709 
Bald Hills Panguitch 0.189 0.601 0.694 0.481 0.746 0.798 
Cave Bald Hills 0.137 0.526 0.628 0.528 0.883 0.803 
Cave Hamlin 0.207 0.612 0.605 0.545 0.642 0.759 
Cave Panguitch 0.215 0.632 0.651 0.49 0.676 0.724 
Hamlin Bald Hills 0.107 0.653 0.55 0.507 0.723 0.75 
Hamlin Cave 0.122 0.501 0.538 0.496 0.739 0.718 
Hamlin Panguitch 0.232 0.467 0.533 0.433 0.79 0.761 
Panguitch Bald Hills 0.164 0.455 0.698 0.568 0.688 0.738 
Panguitch Cave 0.149 0.46 0.65 0.51 0.547 0.741 
Panguitch Hamlin 0.135 0.498 0.523 0.463 0.566 0.695 
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Table 4.3. Variables included in the best fit resource selection function (RSF) model in each study area, the most important of those 
variables, the difference in AICc from a null model, and the conditional R2. The potential variables included topographic position 
index (TPI) and topographic heterogeneity index (THI) at scales of 50 m, 200 m, and 400 m; sagebrush patch core area index (CAI) 
and contiguity (CONTIG); distance to tree cover (TREEDIST); and density of tree cover (TREEDEN) within 400 m and 800 m. 

Study 
Area Season Variables included 

Most 
important 
variable ΔAICc 

Conditional 
R2 

Bald 
Hills 

All TPI400 + THI400 + CAI + Slope 
+ TREEDIST + TREE400

TREEDIST 10645.8 0.21 

Bald 
Hills 

Fall/Winter THI50 + TPI400 + THI400 + 
CAI + Slope + TREEDIST + 
TREEDEN400 

TREEDIST 7934.1 0.366 

Bald 
Hills 

Breeding TPI200 + TPI400 + THI400 + 
CAI + TREEDIST + 
TREEDEN400 

TREEDIST 4696.5 0.361 

Bald 
Hills 

Summer TPI400 + THI400 + CAI + Slope 
+ TREEDIST + TREEDEN400

TREEDIST 1537.6 0.123 

Cave All THI200 + CAI + Slope +
TREEDIST + TREEDEN400

CAI 628.3 0.107 

Cave Fall/Winter TPI200 + THI400 + CAI + 
TREEDIST + TREEDEN400 

CAI 211.2 0.194 

Cave Breeding THI50 + THI400 + CONTIG + 
TREEDIST + TREEDEN800 

TREEDIST 1151.2 0.782 

Cave Summer TPI50 + TPI400 + THI400 + 
CONTIG + TREEDIST + 
TREEDEN400 

CONTIG 470.9 0.184 
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Figure 4.1. Four study areas and their context in Utah and Nevada, drawn here by a 
minimum convex polygon around the data points used in my analyses. Study areas are 1) 
Cave/Steptoe Valleys, 2) Hamlin Valley, 3) Bald Hills, and 4) Panguitch. 
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Figure 4.2. RSF predicted probability of habitat selection by sage-grouse in each study 
area in response to a) topographic heterogeneity in a 400 m window (THI400), b) 
topographic position compared to a 400 m window (TPI400), and c) slope. 
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Figure 4.3. RSF predicted probability of habitat selection by sage-grouse in each study 
area in response to a) distance to tree cover (TREEDIST), b) density of tree cover within 
400 m (TREEDEN400), and c) density of tree cover within 800 m (TREEDEN800). 
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Figure 4.4. Feature contribution1 of three variables of tree cover in models across four 
study areas. Panel a) shows the contribution of density of treed pixels in an 800 m radius 
(TREEDEN800), panel b) shows the contribution of density of treed pixels in a 400 m 
radius (TREEDEN400), and panel c) shows the contribution of the distance to trees 
(TREEDIST). 
1 Feature contribution measures how a variable impacts the random forest model’s 
prediction of a point’s used vs available status at each value of that variable. A positive 
value indicates a greater probability of the point being “used” compared to the prediction 
made by the rest of the model. The solid black line at feature contribution = 0 indicates 
the point at which selection and avoidance are equally likely. 
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Figure 4.5. Feature contribution to RF model results of three topographic variables in the 
models across four study areas. Panel a) shows the impact of topographic heterogeneity 
within a 400 m radius (THI400), panel b) shows topographic position compared to a 200 
m radius (TPI200), and panel c) shows topographic slope. 
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Figure 4.6. Partial dependence1 of a) topographic position index within a 400 m radius 
(TPI400), b) sagebrush core area index (CAI), and c) sagebrush patch contiguity 
(CONTIG) with data from all four study areas.  
1 Partial dependence measures the impact of one variable on the predicted outcome (here, 
probability of selection) of the response in the RF models. A higher value corresponds to 
a higher probability of selection. 
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Figure 4.7. RSF predicted probability of habitat selection by sage-grouse in each season 
in response to a) distance to tree cover (TREEDIST), b) density of tree cover within 400 
m (TREEDEN400), and c) density of tree cover within 800 m (TREEDEN800). 
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Figure 4.8. Feature contribution to RF model results in each season of a) density of treed 
pixels within 800 m (TREEDEN800), b) density of treed pixels within 400 m, and c) 
distance to trees (TREEDIST). 
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Figure 4.9. RSF predicted probability of habitat selection by sage-grouse in each study 
area in response to density of tree cover within 800 m (TREEDEN800) during a) 
Fall/Winter, b) Breeding, and c) Summer seasons. 
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Figure 4.10. Figure contribution to RF model results in each study area of tree density 
within 800 m (TREEDEN800) in a) Fall/Winter, b) Breeding, and c) Summer seasons. 
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Figure 4.11. RSF predicted probability of habitat selection by sage-grouse in each season 
in response to a) sagebrush patch core area index (CAI) and b) sagebrush patch contiguity 
(CONTIG). 
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Figure 4.12. Feature contribution to RF model results in each season of a) sagebrush core 
area index (CAI) and b) sagebrush patch contiguity (CONTIG). 
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Figure 4.13. RSF predicted probability of habitat selection by sage-grouse in each study 
area in response to density of sagebrush patch contiguity (CONTIG) during a) 
Fall/Winter, b) Breeding, and c) Summer seasons. 
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Figure 4.14. Feature contribution to RF model results in each study area of sagebrush 
patch contiguity (CONTIG) during a) Fall/Winter, b) Breeding, and c) Summer seasons. 
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CHAPTER V 

CONCLUSIONS 

As habitat specialists that rely on the quality and connectivity of sagebrush at 

multiple scales, sage-grouse are an imperiled denizen of sagebrush ecosystems, which are 

among the most threatened ecosystems in North America (Braun 1998, Connelly et al. 

2004, Schroeder et al. 2004, Wisdom et al. 2005). Ongoing efforts to understand and 

conserve sage-grouse and their habitat are emblematic of many of the conservation issues 

of North America, as they require cooperation across political boundaries and the 

contribution of a wide variety of stakeholders. Understanding the varied challenges that 

sage-grouse face and the barriers to their conservation may illustrate many issues of land 

management and wildlife conservation more generally. 

Greater sage-grouse face a variety of threats to their persistence, the greatest of 

which is habitat loss (Braun 1998, Schroeder et al. 2004). Yet the factors limiting sage-

grouse habitat vary across their distribution, and it is difficult to implement a single 

directive for their management. In order to understand the factors likely to drive future 

habitat loss and extirpations, it is important to study their habitat selection across their 

distribution, but especially in areas of fragmented and poor-quality habitat. This will help 

us understand the environmental factors limiting their distribution and those that are 

likely to drive extirpations in the future. In this dissertation, I have conducted work aimed 

at describing the mechanisms limiting sage-grouse habitat selection at their southern 

range margin and providing more actionable knowledge for their conservation and 

management. 



202 
 

With variable threats to sage-grouse and their habitat, it is critical to analyze the 

most important habitat characteristics and limiting factors in different portions of their 

distribution. We know already that, while sage-grouse generally seek the same habitat 

(Aldridge et al. 2008), there are different climatic and landscape conditions across their 

distribution that present different challenges and drive the need for management that 

varies regionally (Doherty et al. 2016, Coates et al. 2021). In the southern Great Basin, 

sage-grouse habitat tends to be more xeric and more fragmented than in the core of their 

distribution (Miller and Eddleman 2001). The southern range margin provides a potential 

natural laboratory to evaluate the factors limiting sage-grouse habitat selection and, by 

extension, distribution. That knowledge can inform future conservation and management 

where these marginal conditions may eventually become more prevalent. 

 In Chapter 2, I analyzed the impact of land cover and topography on sage-grouse 

habitat selection at local scales and how those impacts varied across four study areas 

using a random forest (RF) model. I found that sage-grouse may use sagebrush patches 

and topography as shelter from the perceived predation risk presented by conifers. In 

these findings, I have identified a nuance in the relationship between sage-grouse and 

their habitat, wherein they will select (or tolerate) tree cover under some conditions. This 

has important implications for how sage-grouse respond to conifer encroachment into 

sagebrush habitat. While it does not suggest that conifer encroachment is not a threat to 

sage-grouse, it does imply that sage-grouse exploit dense sagebrush and topography to 

continue using habitat that might otherwise be inaccessible because of the threat of 

predation.  
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However, knowing that sage-grouse are threatened by and tend to avoid tree cover 

in other areas of their range, it is unclear why I found that sage-grouse will select areas of 

greater tree cover in some conditions. In Chapter 3, I sought to test a potential 

mechanism. Ongoing climate change threatens sagebrush habitat, especially in the 

southern Great Basin, the southern end of sage-grouse distribution (Kleinhesselink and 

Adler 2018, Renwick et al. 2018). Sage-grouse in this region are likely to face conditions 

that are more xeric and with less sagebrush cover. So, while it appears that sage-grouse 

exploit sagebrush cover and topography to make tree cover less threatening, they are 

likely to have less capacity to do so in the future. It is also clear that sage-grouse in more 

xeric habitats are more prone to extirpation and climate appears to be an important factor, 

for which they may be both direct and indirect causes; higher temperature and lower 

precipitation drive population decreases, likely due to impacts on both sagebrush and 

mesic habitat (Holloran et al. 2005, Aldridge et al. 2008, Wisdom et al. 2011, Acevedo 

2021). 

In addition to the impacts of climate change on sagebrush cover, sage-grouse are 

also likely to face threats from direct thermal stress, as the forecasted impacts on 

sagebrush communities are likely to reduce their thermal buffering capacity compared to 

intact sagebrush systems (Anthony et al. 2020). However, no study of which I am aware 

has demonstrated how thermal stress impacts sage-grouse habitat selection. While some 

have shown an impact on other gallinaceous species (Hovick et al. 2014, Rakowski et al. 

2019), it is crucial to understand when and where thermal stress impacts sage-grouse and 

how to best conserve essential thermal refuge habitat. This will inform and add nuance to 

decision-making based on the variety of threats that sage-grouse face, as thermal stress 
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could create cryptic habitat fragmentation and explain patterns of habitat selection and 

suitability in some areas of their distribution. In Chapter 3, I used temperature from in 

situ data loggers to describe how and when temperature drives sage-grouse habitat 

selection across the landscape and throughout the year at their warm, southern range 

margin. 

I found that sage-grouse respond to the most extreme temperatures by selecting 

habitat with greater tree cover and nearer to trees in the study area with hotter mean 

temperatures and in dense sagebrush in the study area with cooler mean temperatures. 

This suggests that sage-grouse are threatened by direct thermal stress and respond to the 

risk of it by using vegetation cover for thermal refuge. Where it is available, they appear 

to select dense sagebrush cover. However, at higher temperatures and with less 

contiguous sagebrush cover, they exploit the shade of tree cover to minimize thermal 

stress. My findings suggest that when exposed to extreme heat, sage-grouse are 

compelled to select habitat that could incur greater risk of depredation by avian predators 

due to the presence of tree cover (Coates et al. 2017, Prochazka et al. 2017).  

Studying wildlife-habitat relationships at the multiple scales at which they 

function can inform our understanding of the mechanisms driving wildlife distributions 

and population processes. In addition to efforts at larger scales, studying habitat selection 

by individuals within their home ranges can help define the environmental factors 

impacting their distribution and function within the ecosystem. For two decades, resource 

selection functions (RSFs) have been the most common means of analyzing habitat 

selection and continue to be an invaluable tool for basic and applied research. However, 

there is growing recognition that methods like RSF may have some limitations when 
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applied to ecological data where nonlinear effects and interactions are common 

(Recknagel 2001, Elith et al. 2006a, Mi et al. 2017, Valavi et al. 2022). Therefore, it is 

important to test other methods for analyzing wildlife habitat selection, including their 

means to both evaluate environmental effects and predict selection in new areas. One of 

the methods recently used for habitat selection is random forest (RF), a machine learning 

method that does not assume sample independence, is less constrained by 

multicollinearity, and is easier to fit to nonlinear relationships and interactions. 

In Chapter 4, I analyzed sage-grouse habitat selection across four study areas and 

three ecologically relevant seasons to compare the effectiveness of RSF and RF. I 

implemented a RF modeling procedure optimized to minimize the chance of overfitting 

and mitigate the issues of class imbalance and overlap (Valavi et al. 2021). I also 

conducted a typical RSF by building generalized linear mixed models for the same study 

areas and seasons using individual sage-grouse as a random effect. I found that RF 

models outperformed simple RSF models in their capacity to describe ecological 

relationships and detect potentially critical interactions and thresholds.  

While there was some agreement in ecological findings between the two types of 

model, the RF models demonstrated important nonlinear effects, including that sage-

grouse select areas of greater tree cover and areas closer to trees than predicted by the 

RSF models. They also indicated potential mechanisms that lead sage-grouse to select 

habitat close to trees, as sage-grouse were most likely to select that habitat when there 

was also more contiguous sagebrush cover and moderately rugged terrain, which they 

may use as visual cover from avian predators using trees. The RSF models did not show 

that important result. Further, I found that the RF models had a greater capacity to predict 
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data from the other study areas than the RSF models, which shows that the RF models 

were both more precise and transferable. My findings provide new evidence for sage-

grouse selecting habitat near trees, despite the known risk posed by tree cover. While 

other research has detected sage-grouse selecting habitat nearer trees than expected 

(Dinkins et al. 2014), my research builds on that finding and suggests a potential means 

to foster more suitable habitat in areas where conifer encroachment could limit sage-

grouse. 

 
CONSERVATION AND MANGAGEMENT IMPLICATIONS 

In the preceding chapters, I sought to identify the features of the landscape that 

drive their habitat selection at the southern edge of sage-grouse distribution, analyze the 

choices they are likely to make in response to potential threats, and test an alternative 

method to better inform their conservation. My findings provide ecological nuance for 

our understanding of sage-grouse habitat needs and actionable information for their 

conservation and management. In Chapter 2, I found that in some conditions, sage-grouse 

select habitat nearer to trees than expected and do so in areas where they can use 

sagebrush and topography as visual cover from potential avian predators. This suggests 

that in a region where encroaching conifer cover threatens sage-grouse habitat, managers 

should prioritize conifer removals in flat, open habitat with little sagebrush cover where 

there is little refuge in which sage-grouse could seek shelter. In Chapter 3, I found that 

sage-grouse likely select habitat nearer to trees and with greater tree cover during times 

of extreme heat when sagebrush cover is inadequate shade. When they face thermal 

stress, sage-grouse are likely forced to select risky habitat where they are more exposed 

to the risk of predation. To act on this knowledge, where they are exposed to extreme 
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heat land management for sage-grouse may be able to provide suitable microhabitat by 

leaving clusters of trees for shade, especially in rugged terrain. In Chapter 4, I found that 

random forest models (RF), optimized for habitat selection analysis, outperformed 

traditional resource selection functions (RSF) in predicting out-of-sample data and in 

detecting important features driving sage-grouse habitat selection. My findings suggest 

that some novel methods may better inform conservation and management, especially 

when we anticipate important regional variation. They also support the need for wildlife 

and habitat conservation that is driven by both regional and local environmental 

conditions to conduct the most effective management. 
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APPENDIX A 

CHAPTER 1 SUPPORTING INFORMATION 

Table A1. Mean value and standard deviation for every variable in each of the four study 
areas at every ‘available’ point used to sample the environment. 
 
Study Area Variable Mean SD 
Bald Hills TPI50 -0.00003 0.3285 
Bald Hills THI50 4.018 5.541 
Bald Hills TPI200 0.004 2.438 
Bald Hills THI200 589.893 673.007 
Bald Hills TPI400 0.0008 5.129 
Bald Hills THI400 4878.595 5258.002 
Bald Hills CAI 4.7844 10.931 
Bald Hills CONTIG 0.1277 0.252 
Bald Hills TREEDIST 593.982 682.662 
Bald Hills TREEDEN400 0.2078 0.1661 
Bald Hills TREEDEN800 0.2079 0.1506 
Bald Hills Slope 4.703 5.307 
Cave TPI50 -0.0014 0.3174 
Cave THI50 3.302 5.4981 
Cave TPI200 -0.0227 2.2879 
Cave THI200 466.939 692.367 
Cave TPI400 -0.0613 4.8788 
Cave THI400 3854.898 5632.998 
Cave CAI 21.763 22.1345 
Cave CONTIG 0.3843 0.3679 
Cave TREEDIST 353.476 428.204 
Cave TREEDEN400 0.093 0.1699 
Cave TREEDEN800 0.0931 0.1642 
Cave Slope 4.092 5.726 
Hamlin TPI50 0.00082 0.2109 
Hamlin THI50 2.6893 3.489 
Hamlin TPI200 -0.0039 1.4598 
Hamlin THI200 351.112 396.724 
Hamlin TPI400 -0.0165 3.0466 
Hamlin THI400 2760.63 3192.937 
Hamlin CAI 13.676 20.559 
Hamlin CONTIG 0.2522 0.3499 
Hamlin TREEDIST 657.693 570.054 
Hamlin TREEDEN400 0.0378 0.1207 
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Hamlin TREEDEN800 0.0382 0.1168 
Hamlin Slope 2.63 3.649 
Panguitch TPI50 -0.0013 0.4048 
Panguitch THI50 4.9415 6.8186 
Panguitch TPI200 -0.0114 2.9755 
Panguitch THI200 760.652 773.187 
Panguitch TPI400 -0.0503 6.4435 
Panguitch THI400 6646.89 6082.653 
Panguitch CAI 20.6367 21.5395 
Panguitch CONTIG 0.3678 0.3656 
Panguitch TREEDIST 188.318 438.611 
Panguitch TREEDEN400 0.171 0.236 
Panguitch TREEDEN800 0.171 0.221 
Panguitch Slope 6.608 6.432 
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