5 research outputs found

    Oilseeds as Functional Foods: Content and Composition of Many Phytochemicals and Therapeutic Alternatives

    Get PDF
    Oilseeds composition has been studied extensively, but recently it has been thoroughly investigated considering especially the phytochemicals representing the minor components. This interest is connected with the activity of such compounds against cardiovascular diseases, lipid oxidation, protein cross-linking and DNA mutations and hemostasis function, which prevent the attack of biomolecules by free radicals. This chapter book could aim to give an overview of the different uses of several oilseeds as bioactive foods, focusing on their active constituents (phytosterols, polyphenols, tocopherols, tocotrienols, and carotenoids) and their content in oilseeds. We will also focus on the beneficial aspects of theses nutraceuticals in human health

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Fatty acids profile in three cultivars of Tunisian apricot oilseeds (<i>Prunus armeniaca</i> L.): impact of maturity

    No full text
    Profiling’s of oil yield and fatty acid were monitored during maturation of three different accession of Tunisian apricots (AprB, AprC and AprO) among different days after flowering (DAF) and grown in two different geographical regions of Tunisia. The first results show that a quick distribution started in immature oilseeds apricot and continued until their full maturity. Nine fatty acids were identified in apricot oilseeds such as palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, gadoleic and margaric acids. Palmitic, oleic and linoleic acids were determined as major fatty acids in apricot oil varieties. Interestingly, the content of each fatty acid in the three accessions of apricot varied significantly (p ) during seeds development and especially in wild apricot AprB. PCA analysis in AprB demonstrate that at the time-date of 41 DAF, the production of fatty acids is in its maximum and could have numerous future therapeutics applications.</p

    Comparison of the Concentrations of Long-Chain Alcohols (Policosanol) in Three Tunisian Peanut Varieties (Arachis hypogaea L.)

    No full text
    International audiencePolicosanol (PC) is a mixture of high molecular weight aliphatic primary alcohols. Literature about the contents and compositions of PC derived from peanut varieties is scarce. Total PC composition and content in whole peanut grain samples from three varieties of peanut (two cultivars, AraC and AraT, and a wild one, AraA) were identified using a gas chromatograph system coupled with a mass spectrophotometer. The results show that, qualitatively, 21 components of peanut aliphatic alcohols were identified (C(14)-C(30)). Besides (C(18=)), the results exhibited a previously unreported mixture of PC compositions in the peanuts: the unsaturated PC (UPC), which are (C(20=)), (C(21=)), (C(22=)), and (C(24=)). The main components of total PC in Tunisian peanut kernels are docosanol (C(22)), (Z)-octadec-9-en-1-ol (C(18=)), hexadecanol (C(16)), and octadecanol (C(18)). Quantitatively, the total PC content of the whole peanut samples varied from 11.18 to 54.19 mg/100 g of oil and was higher than those of beeswax and whole sugar cane, which are sources of dietary supplements containing policosanol
    corecore