29 research outputs found

    Rab3-GEF controls active zone development at the Drosophila neuromuscular junction

    Get PDF
    Synaptic signaling involves the release of neurotransmitter from presynaptic active zones (AZs). Proteins that regulate vesicle exocytosis cluster at AZs, composing the cytomatrix at the active zone (CAZ). At the Drosophila neuromuscular junction (NMJ), the small GTPase Rab3 controls the distribution of CAZ proteins across release sites, thereby regulating the efficacy of individual AZs. Here we identify Rab3-GEF as a second protein that acts in conjunction with Rab3 to control AZ protein composition. At rab3-GEF mutant NMJs, Bruchpilot (Brp) and Ca(2+) channels are enriched at a subset of AZs, leaving the remaining sites devoid of key CAZ components in a manner that is indistinguishable from rab3 mutant NMJs. As the Drosophila homologue of mammalian DENN/MADD and Caenorhabditis elegans AEX-3, Rab3-GEF is a guanine nucleotide exchange factor (GEF) for Rab3 that stimulates GDP to GTP exchange. Mechanistic studies reveal that although Rab3 and Rab3-GEF act within the same mechanism to control AZ development, Rab3-GEF is involved in multiple roles. We show that Rab3-GEF is required for transport of Rab3. However, the synaptic phenotype in the rab3-GEF mutant cannot be fully explained by defective transport and loss of GEF activity. A transgenically expressed GTP-locked variant of Rab3 accumulates at the NMJ at wild-type levels and fully rescues the rab3 mutant but is unable to rescue the rab3-GEF mutant. Our results suggest that although Rab3-GEF acts upstream of Rab3 to control Rab3 localization and likely GTP-binding, it also acts downstream to regulate CAZ development, potentially as a Rab3 effector at the synapse

    Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation

    Get PDF
    This work was funded by an MRC Career Development Award (MR/ P009824/1 and MR/P009824/2) to GD’A, as well as an MRC grant to SML/GD’A (MR/T032669/1), a BBSRC grant to SML (BB/M001067/1), and an additional direct contribution from Eli Lilly. D.J.H. was sup- ported by MRC (MR/N00275X/1 and MR/S025618/1), Diabetes UK (17/ 0005681), and the European Research Council (ERC) under the Eu- ropean Union’s Horizon 2020 research and innovation programme (Starting Grant 715884 to D.J.H.). AC was supported for part of this project by a travel grant from the Italian Society of Pharmacology and a fellowship from the Veronesi Foundation (Italy).Peer reviewedPublisher PD

    The Consequences of LRP5 Mutations on the Skeleton

    No full text

    Clinical and Molecular Findings in Osteoporosis-Pseudoglioma Syndrome

    Get PDF
    Mutations in the low-density lipoprotein receptor–related protein 5 gene (LRP5) cause autosomal recessive osteoporosis-pseudoglioma syndrome (OPPG). We sequenced the coding exons of LRP5 in 37 probands suspected of having OPPG on the basis of the co-occurrence of severe congenital or childhood-onset visual impairment with bone fragility or osteoporosis recognized by young adulthood. We found two putative mutant alleles in 26 probands, only one mutant allele in 4 probands, and no mutant alleles in 7 probands. Looking for digenic inheritance, we sequenced the genes encoding the functionally related receptor LRP6, an LRP5 coreceptor FZD4, and an LRP5 ligand, NDP, in the four probands with one mutant allele, and, looking for locus heterogeneity, we sequenced FZD4 and NDP in the seven probands with no mutations, but we found no additional mutations. When we compared clinical features between probands with and without LRP5 mutations, we found no difference in the severity of skeletal disease, prevalence of cognitive impairment, or family history of consanguinity. However, four of the seven probands without detectable mutations had eye pathology that differed from pathology previously described for OPPG. Since many LRP5 mutations are missense changes, to differentiate between a disease-causing mutation and a benign variant, we measured the ability of wild-type and mutant LRP5 to transduce Wnt and Norrin signal ex vivo. Each of the seven OPPG mutations tested, had reduced signal transduction compared with wild-type mutations. These results indicate that early bilateral vitreoretinal eye pathology coupled with skeletal fragility is a strong predictor of LRP5 mutation and that mutations in LRP5 cause OPPG by impairing Wnt and Norrin signal transduction

    Reduced Affinity to and Inhibition by DKK1 Form a Common Mechanism by Which High Bone Mass-Associated Missense Mutations in LRP5 Affect Canonical Wnt Signaling

    No full text
    The low-density-lipoprotein receptor-related protein 5 (LRP5), a coreceptor in the canonical Wnt signaling pathway, has been implicated in human disorders of low and high bone mass. Loss-of-function mutations cause the autosomal recessive osteoporosis-pseudoglioma syndrome, and heterozygous missense mutations in families segregating autosomal dominant high bone mass (HBM) phenotypes have been identified. We expressed seven different HBM-LRP5 missense mutations to delineate the mechanism by which they alter Wnt signaling. None of the mutations caused activation of the receptor in the absence of ligand. Each mutant receptor was able to reach the cell surface, albeit at differing amounts, and transduce exogenously supplied Wnt1 and Wnt3a signal. All HBM mutant proteins had reduced physical interaction with and reduced inhibition by DKK1. These data suggest that HBM mutant proteins can transit to the cell surface in sufficient quantity to transduce Wnt signal and that the likely mechanism for the HBM mutations' physiologic effects is via reduced affinity to and inhibition by DKK1

    Green-to-Red Photoconversion of GCaMP

    No full text
    <div><p>Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs—including GCaMP3, GCaMP5 and GCaMP6—can be converted from green to red following exposure to blue-green light (450–500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals.</p></div

    Summary of Photoconvertibility of GCaMP3 Variants.

    No full text
    <p>ND: Not done</p><p>*<b>Higher conversion efficiency compared to GCaMP3.</b></p><p>Summary of Photoconvertibility of GCaMP3 Variants.</p
    corecore