3 research outputs found

    TRPM2 promotes pancreatic cancer by PKC/MAPK pathway

    No full text
    Abstract The mechanism of pancreatic cancer (PA) is not fully understanded. In our last report, TRPM2 plays a promising role in pancreatic cancer. However, the mechanism of TRPM2 is still unknown in this dismal disease. This study was designed to investigate the role and mechanism of TRPM2 in pancreatic cancer. TRPM2 overexpressed and siRNA plasmid were created and transfected with pancreatic cancer cell line (BxPC-3) to construct the cell model. We employed CCK-8, Transwell, scratch wound, and nude mice tumor-bearing model to investigate the role of TRPM2 in pancreatic cancer. Besides, we collected the clinical data, tumor tissue sample (TT) and para-tumor sample (TP) from the pancreatic cancer patients treated in our hospital. We analyzed the mechanism of TRPM2 in pancreatic cancer by transcriptome analysis, western blot, and PCR. We blocked the downstream PKC/MEK pathway of TRPM2 to investigate the mechanism of TRPM2 in pancreatic cancer by CCK8, scratch wound healing, and transwell assays. Overexpressed TRPM2 could promote pancreatic cancer in proliferation, migration, and invasion ability in no matter the cell model or nude mice tumor-bearing model. TRPM2 level is highly negative correlated to the overall survival and progression-free survival time in PA patients, however, it is significantly increased in PA tissue as the tumor stage increases. The transcriptome analysis, GSEA analysis, western-blot, and PCR results indicate TRPM2 is highly correlated with PKC/MAPK pathways. The experiments of PKC/MEK inhibitors added to TRPM2 overexpressed BxPC-3 cell showed that significant inhibition of PA cells happened in CCK8, transwell, and wound-healing assay. TRPM2 may directly activate PKCĪ± by calcium or indirectly activate PKCĪµ and PKCĪ“ by increased DAG in PA, which promote PA by downstream MAPK/MEK pathway activation

    Effects of low-level organic selenium on lead-induced alterations in neural cell adhesion molecules.

    No full text
    Low-level lead (Pb) exposure has been reported to impair the formation and consolidation of learning and memory by inhibiting the expression of neural cell adhesion molecules (NCAMs) and altering the temporal profile of its polysialylation state. In this study, we investigated whether administration of low-level organic selenium (selenomethionine, Se) at different time points could affect Pb-induced changes of NCAMs in female Wistar rats. Here we reported that the exposure of Se (60Ī¼g/kg body weight/day) at different time points significantly alleviated Pb-induced reductions in the mRNA and protein levels of NCAMs, and increases in the mRNA levels of two polysialyltransferases (St8sia II, Stx; St8sia IV, Pst) as well as the sialyltransferase activity (p\u3c0.05). The concentrations of Pb in blood and hippocampi of Wistar rats treated with the combination of Se and Pb were significantly lower than those treated with Pb alone (p\u3c0.05). Our results suggest that low-level organic Se can not only prevent but also reverse Pb-induced alterations in the expression and polysialylated state of NCAMs as well as the concentration of Pb in rat blood and hippocampus. Brain Res 2013 Sep 12; 1530:76-81
    corecore