38 research outputs found

    Kinases and pseudokinases: Lessons from RAF

    Get PDF
    Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be “frozen” by introducing mutations at their hydrophobic spines

    Tuning the “violin” of protein kinases: The role of dynamics‐based allostery

    No full text
    The intricacies of allosteric regulation of protein kinases continue to engage the research community. Allostery, or control from a distance, is seen as a fundamental biomolecular mechanism for proteins. From the traditional methods of conformational selection and induced fit, the field has grown to include the role of protein motions in defining a dynamics-based allosteric approach. Harnessing of these continuous motions in the protein to exert allosteric effects can be defined by a "violin" model that focuses on distributions of protein vibrations as opposed to concerted pathways. According to this model, binding of an allosteric modifier causes global redistribution of dynamics in the protein kinase domain that leads to changes in its catalytic properties. This model is consistent with the "entropy-driven allostery" mechanism proposed by Cooper and Dryden in 1984 and does not require, but does not exclude, any major structural changes. We provide an overview of practical implementation of the violin model and how it stands amidst the other known models of protein allostery. Protein kinases have been described as the biomolecules of interest. © 2019 IUBMB Life, 71(6):685-696, 2019

    Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer

    No full text
    The expertise of protein kinases lies in their dynamic structure, wherein they are able to modulate cellular signaling by their phosphotransferase activity. Only a few hundreds of protein kinases regulate key processes in human cells, and protein kinases play a pivotal role in health and disease. The present study dwells on understanding the working of the protein kinase-molecular switch as an allosteric network of "communities" composed of congruently dynamic residues that make up the protein kinase core. Girvan-Newman algorithm-based community maps of the kinase domain of cAMP-dependent protein kinase A allow for a molecular explanation for the role of protein conformational entropy in its catalytic cycle. The community map of a mutant, Y204A, is analyzed vis-Ă -vis the wild-type protein to study the perturbations in its dynamic profile such that it interferes with transfer of the Îł-phosphate to a protein substrate. Conventional biochemical measurements are used to ascertain the effect of these dynamic perturbations on the kinetic profiles of both proteins. These studies pave the way for understanding how mutations far from the kinase active site can alter its dynamic properties and catalytic function even when major structural perturbations are not obvious from static crystal structures
    corecore