4,582 research outputs found

    Shock temperatures in anorthite glass

    Get PDF
    Temperatures of CaAl2Si2O8 (anorthite glass) shocked to pressures between 48 and 117 GPa were measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high pressure phase. At least three phase transitions, at pressures of about 55, 85, and 100 GPa and with transition energies of about 0.5 MJ/kg each (approximately 1.5 MJ/kg total) are required to explain the shock temperature data. The phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yields good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases

    Exact dimer ground states for a continuous family of quantum spin chains

    Full text link
    Using the matrix product formalism, we define a multi-parameter family of spin models on one dimensional chains, with nearest and next-nearest neighbor anti-ferromagnetic interaction for which exact analytical expressions can be found for its doubly degenerate ground states. The family of Hamiltonians which we define, depend on 5 continuous parameters and the Majumdar-Ghosh model is a particular point in this parameter space. Like the Majumdar-Ghosh model, the doubly degenerate ground states of our models have a very simple structure, they are the product of entangled states on adjacent sites. In each of these states there is a non-zero staggered magnetization, which vanishes when we take their translation-invariant combination as the new ground states. At the Majumdar-Ghosh point, these entangled states become the spin-singlets pertaining to this model. We will also calculate in closed form the two point correlation functions, both for finite size of the chain and in the thermodynamic limit.Comment: 11 page

    Extremely energetic cosmic neutrinos: Opportunities for astrophysics, particle physics, and cosmology

    Full text link
    Existing and planned observatories for cosmic neutrinos open up a huge window in energy from 10^7 to 10^17 GeV. Here, we discuss in particular the possibilities to use extremely energetic cosmic neutrinos as a diagnostic of astrophysical processes, as a tool for particle physics beyond the Standard Model, and as a probe of cosmology.Comment: 10 pages, 7 figures, ws-procs9x6.cls, talk presented at the ARENA Workshop, DESY, Zeuthen, Germany, May 17-19, 200

    A population-based case-control study on social factors and risk of testicular germ cell tumours

    Get PDF
    Objectives Incidence rates for testicular cancer have risen over the last few decades. Findings of an association between the risk of testicular cancer and social factors are controversial. The association of testicular cancer and different indicators of social factors were examined in this study.<p></p> Design Case–control study.<p></p> Setting Population-based multicentre study in four German regions (city states Bremen and Hamburg, the Saarland region and the city of Essen).<p></p> Participants The study included 797 control participants and 266 participants newly diagnosed with testicular cancer of which 167 cases were classified as seminoma and 99 as non-seminoma. The age of study participants ranged from 15 to 69 years.<p></p> Methods Social position was classified by educational attainment level, posteducational training, occupational sectors according to Erikson-Goldthorpe-Portocarrero (EGP) and the socioeconomic status (SES) on the basis of the International SocioEconomic Index of occupational status (ISEI). ORs and corresponding 95% CIs (95% CIs) were calculated for the whole study sample and for seminoma and non-seminoma separately.<p></p> Results Testicular cancer risk was modestly increased among participants with an apprenticeship (OR=1.7 (95% CI 1.0 to 2.8)) or a university degree (OR=1.6 (95% CI 0.9 to 2.8)) relative to those whose education was limited to school. Analysis of occupational sectors revealed an excess risk for farmers and farm-related occupations. No clear trend was observed for the analyses according to the ISEI-scale.<p></p> Conclusions Social factors based on occupational measures were not a risk factor for testicular cancer in this study. The elevated risk in farmers and farm-related occupations warrants further research including analysis of occupational exposures.<p></p&gt

    Shock temperatures of SiO_2 and their geophysical implications

    Get PDF
    The temperature of SiO_2 in high-pressure shock states has been measured for samples of single-crystal α-quartz and fused quartz. Pressures between 60 and 140 GPa have been studied using projectile impact and optical pyrometry techniques at Lawrence Livermore National Laboratory. Both data sets indicate the occurrence of a shock-induced phase transformation at ∼70 and ∼50 GPa along the α- and fused quartz Hugoniots, respectively. The suggested identification of this transformation is the melting of shock-synthesized stishovite, with the onset of melting delayed by metastable superheating of the crystalline phase. Some evidence for this transition in conventional shock wave equation of state data is given, and when these data are combined with the shock temperature data, it is possible to construct the stishovite-liquid phase boundaries. The melting temperature of stishovite near 70 GPa pressure is found to be 4500 K, and melting in this vicinity is accompanied by a relative volume change and latent heat of fusion of ∼2.7% and ∼2.4 MJ/kg, respectively. The solid stishovite Hugoniot centered on α-quartz is well described by the linear shock velocity-particle velocity relation, u_s = 1.822 up + 1.370 km/s, while at pressures above the melting transition, the Hugoniot centered on α-quartz has been fit with u_s = 1.619 u_p + 2.049 km/s up to a pressure of ∼200 GPa. The melting temperature of stishovite near 100 GPa suggests an approximate limit of 3500 K for the melting temperature of SiO_2-bearing solid mantle mineral assemblages, all of which are believed to contain Si^(4+) in octahedral coordination with O^(2−). Thus 3500 K is proposed as an approximate upper limit to the melting point and the actual temperature in the earth's mantle. Moreover, the increase of the melting point of stishovite with pressure at 70 GPa is inferred to be ∼11 K/GPa. Using various adiabatic temperature gradients in the earth's mantle and assuming creep is diffusion controlled in the lower mantle, the current results could preclude an increase of viscosity by more than a factor of 10^3 with depth across the mantle

    From AMANDA to IceCube

    Full text link
    The first string of the neoteric high energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that upon completion the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube's discovery potential for extra-terrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research will be the focus of this paper. Preliminary results of the first antarctic high energy neutrino telescope AMANDA searching in the muon neutrino channel for localized and diffuse excess of extra-terrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated UHE and cascade analyses will be described. A first neutrino spectrum above one TeV in agreement with atmospheric neutrino flux expectations and no extra-terrestrial contribution will be presented, followed by a discussion of a limit for neutralino CDM candidates annihilating in the center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let

    Estudos de desbaste em Eucalyptus saligna Sm. para rotação longa.

    Get PDF
    bitstream/item/101259/1/PA-1983-Pereira-EstudoDesbaste.pd
    • …
    corecore