51 research outputs found
The Family Purchasing Process of Broadband Internet in Australia
This study investigates the purchase process of broadband internet among 10 Australian families. The objective of this study was to explore the collective decision-making process of families that led to the purchase of broadband. The findings of the research project is the model of the Family Broadband Purchasing Process which maps the critical events, the interplay of family roles and influencing factors that lead to the decision to purchase broadband. The findings from the study can be used to leverage current marketing strategies and contribute to a greater understanding of the lack of demand for broadband
Results of Free Flap Reconstruction After Ablative Surgery in the Head and Neck
ObjectivesDue to the complex anatomy and function of the head and neck region, the reconstruction of ablative defects in this area is challenging. In addition, an increasing interest in improving the quality of life of patients and achieving good functional results has highlighted the importance of free flaps. The aim of this study was to summarize the results of free flap reconstruction and salvage of free flaps in a single institute, and to analyze differences in the results by the flap donor site, recipient site, and learning curve.MethodsThe medical records of patients who underwent free flap reconstruction from 2004-2012 were reviewed retrospectively. One hundred and fifty free flaps were used in 134 patients, who had an average age of 57.7 years. The types of flaps applied, primary defect sites, success rates, results of salvage operations for compromised flap, and the learning curve were analyzed.ResultsThe anterolateral thigh flap was preferred for the reconstruction of head and neck defects. The overall success rate was 90.7%, with 14 cases of failure. A total of 19 salvage operations (12.7%) for compromised flap were performed, and 12 flaps (63.2%) were salvaged successfully. Dependency on the facial vessels as recipient vessels was statistically different when oral and oropharyngeal defects were compared to hypopharyngeal and laryngeal defects. The learning curve for microvascular surgery showed decrease in the failure rate after 50 cases.ConclusionThe free flap technique is safe but involves a significant learning period and requires careful postoperative monitoring of the patient. Early intervention is important for the salvage of free flaps and for lowering the failure rate
Effect of Octreotide Injection on Postoperative Drainage After Neck Dissection: A Preliminary Report of a Prospective, Matched Case-Control Study
Objectives Somatostatin inhibits lymph production and reduces lymph flow into the lymphatic duct. We hypothesized that octreotide, a long-acting somatostatin analog, would reduce drainage after neck dissection (ND) by reducing the overall lymphatic flow in the neck as well as thoracic duct flow. Methods From 2012 to 2014, total 123 patients who had undergone left-sided comprehensive ND, were divided into an octreotide group (49 patients) and a control group (74 patients). Seventeen patients from the octreotide group and 17 from the control group were individually matched by age (±10 years), sex, body mass index (±1 kg/m2), type of cancer, surgeon, and the extent of surgery. These 34 patients were finally included in the study. Results The total fluid drainage volume (540.9 mL vs. 707.9 mL) and drainage volume during the period of octreotide use (the first 5 postoperative days) (461.1 mL vs. 676.4 mL) were significantly lower in the octreotide group. The duration of drain placement (6.3 days vs. 9.4 days) was also shorter in the octreotide group. In the octreotide group, the mean triglyceride concentration in the drainage fluid was significantly lower than that in the control group (43.1 mg/dL vs. 88.8 mg/dL). There was no complication associated with the use of octreotide. Conclusion Our study has shown that postoperative octreotide injections reduce postoperative drainage and the duration of drain placement. Further studies with larger patient populations are warranted to confirm these results and to evaluate the clinical benefits for patients
Left anterior descending artery dissection with retrograde aortic dissection during percutaneous coronary intervention: a case report
Retrograde catheter-induced coronary artery dissection during percutaneous coronary intervention is an exceedingly rare occurrence, and the likelihood of it extending into the aorta is even more uncommon. Typically, surgical treatment involves aortic root replacement combined with coronary artery bypass grafting. However, in this particular case, a meticulous approach was employed. By carefully guiding wires into the true lumens and placing stents in the proximal left main and left anterior descending arteries, the immediate complications were averted by obstructing the retrograde flow in the false lumen. Subsequently, an off-pump coronary artery bypass was performed using the left internal mammary artery to the left anterior descending artery, without the need to manipulate the aorta. This approach resulted in a short operation time and the absence of any other complications
Prognostic perspectives of PD-L1 combined with tumor-infiltrating lymphocytes, Epstein-Barr virus, and microsatellite instability in gastric carcinomas
Background
The prognostic potential of PD-L1 is currently unclear in gastric carcinomas, although the immune checkpoint PD-1/PD-L1 inhibitors have produced promising results in clinical trials.
Methods
We explored the prognostic implications of programmed death ligand 1 (PD-L1) in 514 consecutive surgically-resected gastric carcinomas. Overall survival and recurrence-free survival were evaluated. Immunohistochemistry for PD-L1, CD8, FOXP3, and PD-1, and molecular grouping by in situ hybridization for Epstein-Barr virus (EBV)-encoded small RNAs and multiplex PCR for microsatellite instability (MSI) markers were performed. Additionally, to explore the function inherent to PD-L1, PD-L1-specific siRNA transfection, cell proliferation, invasion, migration and apoptosis assays were conducted in five gastric carcinoma cell lines.
Results
PD-L1(+) tumor and immune cells were observed in 101 (20%) and 244 patients (47%), respectively. Tumoral PD-L1(+)/immune cell PD-L1(-)/CD8+/low tumor-infiltrating lymphocytes (TILs), and more advanced-stage tumors were associated with unfavorable clinical outcomes in the entire cohort through multivariate analysis. Furthermore, tumoral PD-L1(+)/FOXP3+/low TILs were associated with worse clinical outcomes in EBV-positive and MSI-high carcinomas. Tumoral PD-L1(+) alone was an adverse prognostic factor in EBV-positive carcinomas, but not in MSI-high carcinomas, whereas PD-L1(+) immune cells or FOXP3+/high TILs alone were correlated with a favorable prognosis. PD-L1 knockdown in gastric carcinoma cells suppressed cell proliferation, invasion and migration, and increased apoptosis, which were all statistically significant in two EBV(+) cell lines, but not all in three EBV(−) cell lines.
Conclusions
The prognostic impact of PD-L1 may depend on the tumor microenvironment, and statuses of EBV and MSI, although PD-L1 innately promotes cancer cell survival in cell-based assays. The combination of tumoral PD-L1/immune cell PD-L1/CD8+ TILs may serve as an independent prognostic factor. Tumoral PD-L1(+)/immune cell PD-L1(−)/CD8+/low TILs showing a worse prognosis may be beneficial for combinatorial therapies of anti-PD-L1/PD-1 and anti-cytotoxic T-lymphocyte associated antigen 4 (CTLA4) that would promote effector T cells, thus attack the tumor.This work was supported by the Basic Science Research Program of the National Research Foundation of Korea, which is funded by the Ministry of Education (2016R1D1A1B01010316)
Semi-autonomous control of multiple heterogeneous vehicles for intersection collision avoidance
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.Cataloged from PDF version of thesis.Includes bibliographical references (pages 79-80).This paper describes the design of a supervisory controller (supervisor) that manages multiple heterogeneous vehicles, i.e., multiple controlled and uncontrolled vehicles, to avoid intersection collisions. Two main problems are addressed: verification of the safety of all vehicles at an intersection, and management of the inputs of controlled vehicles. For the verification problem, we employ an inserted idle-time scheduling approach, where the "inserted idle-time" is a time interval when the intersection is deliberately held idle for uncontrolled vehicles to safely cross the intersection. For the management problem, we design a supervisor that is least restrictive in the sense that it overrides controlled vehicles only when a safety violation becomes imminent. We analyze computational complexity and propose an efficient version of the supervisor with a quantified approximation bound. To mitigate the abrupt changes of control inputs and to reduce the number of unnecessary interventions, we additionally design two optimization problems and provide the supervisor with a more conservative bound.by Heejin Ahn.S.M
Safety verification and control for collision avoidance at road intersections
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 145-149).Car crashes cause a large number of fatalities and injuries, with about 33,000 people killed and 2.3 million injured in the United States every year. To prevent car crashes, the government and automotive companies have taken initiatives to develop and deploy communications among vehicles and between vehicles and infrastructure. By using such communications, we design centralized coordinators at road intersections, called supervisors, that monitor the dynamical state of vehicles and the current input of drivers and override them if necessary to prevent a collision. The primary technical problem in the design of such systems is to determine if the current drivers' input will cause an unavoidable future collision, in which case the supervisor must override the drivers at the current time to prevent the collision. This problem is called safety verification problem which is known to be computationally intractable for general dynamical systems. Our approach to solving the safety verification problem is to translate it to a computationally more tractable scheduling problem. When modeling an intersection as a single conflict area inside which the paths of vehicles intersect, we exactly solve the scheduling problem with algorithms that can handle a small number of vehicles in real-time. For a larger number of vehicles or with more complex intersection models, we approximately solve it within quantified approximation bounds by using mixed integer linear programming (MILP) formulations that, despite the combinatorial complexity, can be solved in real-time by available software such as CPLEX. Based on the solutions to the safety verification problem, we design a supervisor and prove that it ensures safety and is nonblocking, another major challenge of verification-based algorithms. We validate the supervisor using computer simulations and experiments.by Heejin Ahn.Ph. D
- …