17 research outputs found

    Adaptive frequency control in smart microgrid using controlled loads supported by real-time implementation.

    No full text
    The operation of the system's frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart μG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area μG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results

    Overall islanded <i>μ</i>G system block diagram considering participation of flexible loads (EVs and HPs) based on the adaptive Jaya optimizer.

    No full text
    Overall islanded μG system block diagram considering participation of flexible loads (EVs and HPs) based on the adaptive Jaya optimizer.</p

    System frequency deviation using real-time simulation with the three investigated controllers.

    No full text
    System frequency deviation using real-time simulation with the three investigated controllers.</p

    General <i>μ</i>G block diagram with optimizer.

    No full text
    The operation of the system’s frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart μG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area μG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results.</div

    Real-time laboratory setup.

    No full text
    The operation of the system’s frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart μG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area μG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results.</div

    A comparison with previously published papers in this research area.

    No full text
    A comparison with previously published papers in this research area.</p

    Simplified microgrid model-based adaptive control system supported by BE for EVs and HPs.

    No full text
    Simplified microgrid model-based adaptive control system supported by BE for EVs and HPs.</p

    Changing in (a) PV Power; (b) Random demand Load.

    No full text
    The operation of the system’s frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart μG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area μG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results.</div

    Data and Parameters Selection of Jaya Algorithm.

    No full text
    The operation of the system’s frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart μG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area μG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results.</div

    Flowchart of JBO.

    No full text
    The operation of the system’s frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart μG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area μG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results.</div
    corecore