23 research outputs found

    CONTEMPORARY TRENDS TOWARD ENVIRONMENTAL ISSUES IN THE KURDISTAN REGION OF IRAQ

    Get PDF
    Environmental problems can be the public’s concern, and they also feel the ratio of dangerousness. Consequently, collecting their opinions and trying to get to know the way of their thinking regarding their envi�ronmental problem and solving them was an attractive case study for the authors of this article. In this research, the authors found the public’s opinion and attitude regarding environmental situations and issues in Kurdistan Region-Iraq throughout a public questionnaire/survey. Around 450 people randomly participated from various geographical locations/cities of the region proportioned to the population rate regarding different demography, gender, age, and academic background. The statistical Package for the Social Sciences (SPSS) program was used to analyze their opinion. Also, the cross-tabulation method was used to understand the relationship between two or more variables. Gender, age, and educational background had effects on the participants’ attitudes toward environmental issues. Females, aged from 20 to 30, and Ph.D. degree holders were paying more attention to the environment. Geographically, the participation ratio for the Sulaimani, Erbil, Duhok, Halabja, and Kirkuk Provinces was 28.48 %, 21.95 %, 17.61%, 16.69%, and 15.00 %, respectively. High and low participation levels of the contributors are a reflection of the environmental awareness of the contributors, providing environmental facilities for the people, background, and culture of the community, and stability of political, economical, and social issues of the areas. Furthermore, COVID-19 affected the environment, and commonly it had a positive impact on the environment

    Performance Based Time History Analysis of Five Story Shear Frame Building Using MATLAB and ETABS

    Get PDF
    This paper compares the time history analysis results for state space representation (SSR) method using MATLAB with the result conducted using ETABS. The equation of motion of the structure subjected to seismic excitation represented by second-order linear non-homogeneous differential equation. This equation reduced to two coupled first order differential equations and state space representation was formulated to represent the system in matrix form and MATLAB Simulink was used to determine response of the structure. The objectives of this study are i) to conduct a comparative study between the state space representation which is a powerful tool with results of ETABS. ii) to investigate the accuracy of SSR method. iii) to conduct a performance based dynamic analysis for shear frame structures and study outcome responses of the structure. This analysis was based on the assumptions, i) the total story mass is lumped at the center of story diaphragm. ii) No deflection occurs in beams; story beams are infinitely rigid in comparison to story columns. iii) no changes in the nature of the boundary conditions during and after the analysis iv) the system is elastic linear time-invariant (ELTI) and material nonlinearity is not considered. So that that structural degree of freedom decreased to be equivalent to the number of storys. The results showed a significant similarity in comparison with ETABS software. The maximum absolute difference of displacement and story drift ratio was 3.35mm and 0.0016 was obtained at the roof of third and fifth story respectively

    Synergic effect of polyester fiber and nano silica on chemical resistance of geopolymer mortar.

    No full text
    The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption

    Flexural strength of alkali activated mortar before and after exposing to sodium chloride.

    No full text
    Flexural strength of alkali activated mortar before and after exposing to sodium chloride.</p

    Fresh density of alkali activated mortar.

    No full text
    The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.</div

    Flexural strength of alkali activated mortar.

    No full text
    The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.</div

    Flowability of alkali activated mortar.

    No full text
    The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.</div

    Sorptivity of alkali activated mortar.

    No full text
    The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.</div

    Conducted tests of alkali activated mortar.

    No full text
    The aim of this study is to evaluate the synergistic effect of polyester fiber-reinforced and nanoslica on the technical performance and durability of geopolymer mortar in terms of the chemical resistance. The study examined how the addition of polyester fiber and nanosilica affects the short-term severe durability of geopolymer mortar specimens made with fly ash (type F). The specimens were cured under ambient conditions. Different percentages (0.6%, 1.2%, and 1.8%) of polyester fiber were used, both with and without nanosilica. Additionally, a reference mixture containing only nanosilica was prepared.All mixtures had a liquid to binder ratio of 0.50, and the ratio of NaOH to Na2SiO3 solution was kept at 2.5:1 by weight. The produced mixes, after 28 days of ambient curing, were immersed for another 28 days in solutions containing 3.5%, 5%, and 5% of sodium chloride, magnesium sulphate and sulfuric acid, respectively. For comparison, control specimens which were not exposed to chemical attacks were tested at the same age of 56 days. Moreover, water absorption and sorptivity tests were conducted to explain the durability performance in a more detailed way. The test results express that the combination of both materials showed a synergistic effect and resulted in greater improvements in compressive and flexural strengths. Both materials can reduce the reduction in compressive strength caused by sulfuric acid exposure, but polyester fiber can increase mass loss. The presence of magnesium sulfate and sodium chloride can lead to a reduction in strength, but the addition of both polyester fiber and nanosilica can mitigate these effects. The addition of fibers creates a network of pores that can limit water absorption, and nanosilica can further enhance the microstructure and reduce water absorption. However, using polyester fiber beyond 1.2 percent can adversely affect the rate of water absorption.</div
    corecore