172 research outputs found

    Clarithromycin expands CD11b+Gr-1+ MDSC-like cells

    Get PDF
    Macrolides are used to treat various inflammatory diseases owing to their immunomodulatory properties; however, little is known about their precise mechanism of action. In this study, we investigated the functional significance of the expansion of myeloid-derived suppressor cell (MDSC)-like CD11b+Gr-1+ cells in response to the macrolide antibiotic clarithromycin (CAM) in mouse models of shock and post-influenza pneumococcal pneumonia as well as in humans. Intraperitoneal administration of CAM markedly expanded splenic and lung CD11b+Gr-1+ cell populations in naïve mice. Notably, CAM pretreatment enhanced survival in a mouse model of lipopolysaccharide (LPS)-induced shock. In addition, adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice against LPS-induced lethality via increased IL-10 expression. CAM also improved survival in post-influenza, CAM-resistant pneumococcal pneumonia, with improved lung pathology as well as decreased interferon (IFN)-γ and increased IL-10 levels. Adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice from post-influenza pneumococcal pneumonia. Further analysis revealed that the CAM-induced CD11b+Gr-1+ cell expansion was dependent on STAT3-mediated Bv8 production and may be facilitated by the presence of gut commensal microbiota. Lastly, an analysis of peripheral blood obtained from healthy volunteers following oral CAM administration showed a trend toward the expansion of human MDSC-like cells (Lineage−HLA-DR−CD11b+CD33+) with increased arginase 1 mRNA expression. Thus, CAM promoted the expansion of a unique population of immunosuppressive CD11b+Gr-1+ cells essential for the immunomodulatory properties of macrolides

    Effects of the common polymorphism in the human aldehyde dehydrogenase 2 (ALDH2) gene on the lung

    Get PDF
    BackgroundAldehyde dehydrogenases (ALDHs) play a major role in detoxification of aldehydes. High expression of ALDHs is a marker for stem cells of many organs including the lungs. A common polymorphism in ALDH2 gene (ALDH2*2) results in inactivation of the enzyme and is associated with alcohol flushing syndrome and increased risk for cardiovascular and Alzheimer’s diseases and some cancers. The effect of this ALDH2 polymorphism on the lung and its stem cells has not been thoroughly examined.MethodsWe examined the association between the ALDH2*2 allele and lung function parameters in a population of healthy individuals. We also examined its association with the incidence of asthma and COPD in patient cohorts. We used the in vitro colony forming assay to detect the effect of the polymorphism on lung epithelial stem cells from both primary human surgical samples and Aldh2*2 transgenic (Tg) and Aldh2 −/− mice. Response to acute and chronic lung injuries was compared between wild type (WT), Aldh2*2 Tg and Aldh2 −/− mice.ResultsIn humans, the ALDH2*2 allele was associated with lower FEV1/FVC in the general population, but not with the development of asthma or COPD. Both the bronchial and lung epithelium carrying the ALDH2*2 allele showed a tendency for lower colony forming efficiency (CFE) compared to ALDH2 allele. In mice, the tracheal epithelial thickness, nuclear density, and number of basal stem cells were significantly lower in Aldh2 −/− and Aldh2*2 Tg adult mice than in WT. Electron microscopy showed significantly increased number of morphologically abnormal mitochondria in the trachea of Aldh2 −/− mice. Aldh2 −/− tracheal and lung cells showed higher ROS levels and fewer functional mitochondria than those from WT mice. No significant differences were detected when tracheal and lung epithelial stem cells were examined for their in vitro CFE. When exposed to chronic cigarette smoke, Aldh2*2 Tg mice were resistant to emphysema development, whereas influenza infection caused more epithelial damage in Aldh2 −/− mice than in WT mice.ConclusionsALDH2 polymorphism has several subtle effects on the lungs, some of which are similar to changes observed during normal aging, suggesting a “premature lung aging” effect

    Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    Get PDF
    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli

    High fat diet activates adult mouse lung stem cells and accelerates several aging-induced effects

    No full text
    High fat diet (HFD) decreases the lifespan of mice, and is a risk factor for several human diseases. Here, we investigated the effects of a HFD on lung epithelial and stem cells and its interaction with aging. Young and old mice were fed with either a standard diet (SD) or a HFD then their trachea and lung were examined for histological changes, inflammation, and mitochondrial function. Their stem cell function was examined using the in vitro organoid/colony forming efficiency (CFE) assay. Aging reduced the number of tracheal basal and alveolar type-2 (AT2) cells. HFD significantly increased the number of AT2 cells. Aging also caused a significant increase in lung inflammation, and HFD caused a similar increase, in young mice. Aging reduced mitochondrial mass and function, and increased reactive oxygen species. In young mice, HFD caused mitochondrial changes similar to the aging-induced changes. Organoid culture of tracheal and lung epithelial cells collected from both young and old HFD-fed mice showed higher CFE compared to SD-fed mice. Switching the HFD to low calorie/fat diet (LCD) efficiently reversed several of the HFD-induced effects. Thus, HFD induces several histological, inflammatory, and functional changes in the lung, and exacerbates the aging-induced lung inflammation and mitochondrial deterioration. LCD can reverse many of the HFD-induced effects. Keywords: High fat diet, Aging, Alveolar cells, Lung stem cells, Mitochondria, Calorie restrictio

    Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior

    Get PDF
    AbstractThe niche surrounding stem cells regulate their fate during homeostasis and after injury or infection. The 3D organoid assay has been widely used to study stem cells behavior based on its capacity to evaluate self-renewal, differentiation and the effect of various medium supplements, drugs and co-culture with supportive cells. We established an assay to study both lung and trachea stem cells in vitro. We characterized their proliferation and differentiation spectrum at baseline then evaluated the effect of co-culturing with fibroblasts and endothelial cells and/or treating with several biologically relevant substances as possible contributors to their niche. We found that lung epithelial (but not tracheal basal) stem cells require co-culture with stromal cells to undergo clonal proliferation and differentiation. Fibroblasts were more efficient than endothelial cells in offering this support and the pattern of support varied based on the tissue origin of the stromal cells. Treating distal lung epithelial or basal stem cells with FGF2, FGF9, FGF10, LIF as well as ALK5 and ROCK inhibitors increased their colony formation efficiency and resulted in variable effects on colonies number, size and differentiation spectrum. This model and findings pave the way for better understanding of lung stem cell niche components and factors that can manipulate lung stem cell behavior
    corecore