13 research outputs found

    (3,5-Dimethylpyrazol-1-yl)-[4-(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-ylamino)phenyl]methanone

    No full text
    In an attempt to enhance cytotoxic activity of pyrazolo[3,4-d]pyrimidine core, we synthesized (3,5-dimethylpyrazol-1-yl)-[4-(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-ylamino)phenyl]methanone (4) by reacting 4-(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-ylamino)benzohydrazide (3) with acetylacetone. Antiproliferative activity of this compound was screened against breast (MCF-7), colon (HCT-116), and liver (HEPG-2) cancer cell lines. The tested compound exhibited cytotoxic activity with IC50 = 5.00–32.52 μM. Moreover, inhibitory activity of this compound was evaluated against the epidermal growth factor receptor (EGFR), the fibroblast growth factor receptor (FGFR), the insulin receptor (IR), and the vascular endothelial growth factor receptor (VEGFR). This target compound showed potent inhibitory activity, especially against FGFR with IC50 = 5.18 μM

    Design of new captopril mimics as promising ACE inhibitors: ADME, pharmacophore, molecular docking and dynamics simulation with MM-PBSA and PCA calculations

    No full text
    New pyrrolidine derivatives with more than 50% structural similarity with captopril were designed to get new captopril mimics with superior potential to act on both peripheral and central ACE. Further optimization was carried out through pharmacophoric mapping, then pharmacokinetics of these compounds were analyzed, 42 derivatives were selected for further study, as they exhibited potential to pass through BBB. Molecular docking on ACE using captopril and lisinopril as reference drugs was performed, and Compound 28 (2-Pyrrolidin-2-ylidene-N-thiomorpholin-4-ylmethyl-malonamic acid ethyl ester) showed the best docking scores, proving its superiority over captopril and comparability to lisinopril. Further molecular dynamics simulations and energy calculations demonstrated binding stability and close mimicry to both drugs. The results indicate that Compound 28 is a promising candidate for further investigations as a potential drug to act centrally and peripherally. Compound 28 can be synthesized by reacting Cyano-pyrrolidin-2-ylidene-acetic acid ethyl ester through Mannich reaction with thiomorpholine and formaldehyde

    Design, Synthesis, In Silico and In Vitro Studies of New Immunomodulatory Anticancer Nicotinamide Derivatives Targeting VEGFR-2

    No full text
    VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects

    Antiproliferative Activity, Proapoptotic Effect, and Cell Cycle Arrest in Human Cancer Cells of Some Marine Natural Product Extract

    No full text
    Bioactive constituents of numerous marine organisms have been investigated recently for their preclinical and clinical anticancer activity. Three marine organisms: black-spotted sea cucumber: Pearsonothuria graeffei (Pg), lollyfish: Holothuria atra (Ha), and sea hare: Aplysia dactylomela (Ad), were collected during winter 2019 from Gulf of Aqaba, Red Sea, Egypt, and macerated with ethanol into three different extracts: PgE, HaE, and AdE, where each was in vitro assessed for its antiproliferative and proapoptotic properties on HepG2, HCT-116, and MCF-7 cancer cells. PgE dose-dependently inhibited the growth of HepG2, HCT-116, and MCF-7 cells within IC50 values 16.22, 13.34, and 18.09 μg/mL, respectively, while the IC50 values for the antiproliferative activity of HaE were 12.48, 10.45, and 10.36 μg/mL, respectively, and the IC50 values of AdE were 6.51, 5.33, and 6.87 μg/mL, respectively. All extracts were found to induce G0/G1 cell cycle arrest for HepG2 cells side by side with their inhibition of CDK2 on all three cell lines while all extracts were also showed to induce apoptosis in HepG2 cell line at pre-G1 phase supplemented by their anticancer activity via proapoptotic protein Bax, caspase-3, and cleavage PARP increase, and antiapoptotic protein Bcl-2 downturn. Moreover, necrosis has been relatively noticed in HepG2 cell line as an additional anticancer activity for each extract. Our data introduced three ethanolic marine extracts as natural chemotherapeutic agents to be further developed for cancer control

    Antitrypanosomal, Antitopoisomerase-I, and Cytotoxic Biological Evaluation of Some African Plants Belonging to Crassulaceae; Chemical Profiling of Extract Using UHPLC/QTOF-MS/MS

    No full text
    In our continuous study for some African plants as a source for antitrypanosomally and cytotoxic active drugs, nine different plants belonging to the Crassulaceae family have been selected for the present study. Sedum sieboldii leaves extract showed an antitrypanosomal activity against Trypanosoma brucei with an IC50 value of 8.5 µg/mL. In addition, they have cytotoxic activities against (HCT-116), (HEPG-2) and (MCF-7), with IC50 values of 28.18 ± 0.24, 22.05 ± 0.66, and 26.47 ± 0.85 µg/mL, respectively. Furthermore, the extract displayed inhibition against Topoisomerase-1 with an IC50 value of 1.31 µg/mL. It showed the highest phenolics and flavonoids content among the other plants' extracts. In order to identify the secondary metabolites which may be responsible for such activities, profiling of the polar secondary metabolites of S. sieboldii extract via Ultra-Performance Liquid Chromatography coupled to High-Resolution QTOF-MS operated in negative and positive ionization modes, which revealed the presence of 46 metabolites, including flavonoids, phenolic acids, anthocyanidins, coumarin, and other metabolites

    <i>In silico</i>, <i>in vitro</i> VEGFR-2 inhibition, and anticancer activity of a 3-(hydrazonomethyl)naphthalene-2-ol derivative

    No full text
    In agreement with the general features of VEGFR-2 inhibitors, a new naphthalene analog (compound 7) has been designed and synthesized. The inhibitory potential of compound 7 was indicated by the proper binding and the perfect energy of −21.10 kcal/mol compared to sorafenib (−21.22) in the molecular docking studies. Next, six MD simulation studies over 100 ns (RMSD, RMSF, SASA, RoG, hydrogen bonding, and distance between the center of mass) confirmed the accurate interaction of compound 7 with the catalytic pocket of VEGFR-2. Similarly, an MM-GBSA established proper binding showing an exact total binding energy of −36.95 ± 3.03 kcal/Mol. Additionally, the MM-GBSA experiment indicated the vital amino acids in the binding process. Types and number of interactions of compound 7 with catalytic pocket of VEGFR-2 were determined through Protein-Ligand Interaction Profiler (PLIP). As a new compound, the DFT was employed to optimize the molecular structure of compound 7. The DFT experiments also verified the interaction features of compound 7 with the VEGFR-2 active site. In silico ADMET experiments revealed the general drug-likeness of compound 7. Fascinatingly, the in vitro examinations were consistent with the in silico experiments as compound 7 inhibited the VEGFR-2 enzyme with an IC50 value of 37 nM. Captivatingly, compound 7 inhibited both MCF-7 and HCT 116 cancer cells exhibiting IC50 values of 10.56 and 7.07 µM exhibiting excellent selectivity indexes of 9.04 and 13.50, respectively. Communicated by Ramaswamy H. Sarma</p

    Discovery of Some Heterocyclic Molecules as Bone Morphogenetic Protein 2 (BMP-2)-Inducible Kinase Inhibitors: Virtual Screening, ADME Properties, and Molecular Docking Simulations

    No full text
    Bone morphogenetic proteins (BMPs) are growth factors that have a vital role in the production of bone, cartilage, ligaments, and tendons. Tumors&rsquo; upregulation of bone morphogenetic proteins (BMPs) and their receptors are key features of cancer progression. Regulation of the BMP kinase system is a new promising strategy for the development of anti-cancer drugs. In this work, based on a careful literature study, a library of benzothiophene and benzofuran derivatives was subjected to different computational techniques to study the effect of chemical structure changes on the ability of these two scaffolds to target BMP-2 inducible kinase, and to reach promising candidates with proposed activity against BMP-2 inducible kinase. The results of screening against Lipinski&rsquo;s and Veber&rsquo;s Rules produced twenty-one outside eighty-four compounds having drug-like molecular nature. Computational ADMET studies favored ten compounds (11, 26, 27, 29, 30, 31, 34, 35, 65, and 72) with good pharmacokinetic profile. Computational toxicity studies excluded compound 34 to elect nine compounds for molecular docking studies which displayed eight compounds (26, 27, 29, 30, 31, 35, 65, and 72) as promising BMP-2 inducible kinase inhibitors. The nine fascinating compounds will be subjected to extensive screening against serine/threonine kinases to explore their potential against these critical proteins. These promising candidates based on benzothiophene and benzofuran scaffolds deserve further clinical investigation as BMP-2 kinase inhibitors for the treatment of cancer

    Phytoconstituents of Butterbur (P. japonicus), their metabolic pathway and ability to modulate bone morphogenic protein (BMP) signaling

    No full text
    ABSTRACTA library of natural sesquiterpene and phenolic compounds from Petasites japonicus are being investigated through different computational techniques to study their ability to target BMP. Lipinski rule, ADMET, molecular docking studies and metabolism were used to reach promising candidates with proposed activity against BMP. Four sesquiterpenes (kablicin, petisinol, bakkenolide D and bakkenolide IIIa) and four phenolic compounds exhibited drug-like properties (caffeic acid, petasiphenol, petasitesin A and petasitesin B), so they deserve further clinical exploration as bone loss modulators. The phenolic compounds specially fukinolic acid and petasiphenol showed lower binding energy with both BMPRIA and BMPRII than Icariin agonist and sesquiterpenes. Bakkenolide IIIa showed dual potential on both BMPRIA and BMPRII with binding energies equal – 7.82 and – 9.9 Kcal/mol respectively, which is more better score than Betulinic acid agonist. This research is focusing on plant-human interactions and exploring the ability of plant constituents to modulate a human protein such as BMP

    Modified Benzoxazole-Based VEGFR-2 Inhibitors and Apoptosis Inducers: Design, Synthesis, and Anti-Proliferative Evaluation

    No full text
    This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib

    Recruitment of hexahydroquinoline as anticancer scaffold targeting inhibition of wild and mutants EGFR (EGFRWT, EGFRT790M, and EGFRL858R)

    No full text
    AbstractHexahydroquinoline (HHQ) scaffold was constructed and recruited for development of new series of anticancer agents. Thirty-two new compounds were synthesised where x-ray crystallography was performed to confirm enantiomerism. Thirteen compounds showed moderate to good activity against NCI 60 cancer cell lines, with GI % mean up to 74% for 10c. Expending erlotinib as a reference drug, target compounds were verified for their inhibiting activities against EGFRWT, EGFRT790M, and EGFRL858R where compound 10d was the best inhibitor with IC50 = 0.097, 0.280, and 0.051 µM, respectively, compared to erlotinib (IC50 = 0.082 µM, 0.342 µM, and 0.055 µM, respectively). Safety profile was validated using normal human lung (IMR-90) cells. 10c and 10d disrupted cell cycle at pre-G1 and G2/M phases in lung cancer, HOP-92, and cell line. Molecular docking study was achieved to understand the potential binding interactions and affinities in the active sites of three versions of EGFRs
    corecore