11 research outputs found

    Signal refinement: principal component analysis and wavelet transform of visual evoked response

    Get PDF
    This study presents an analysis on Visual Evoked Potentials (VEPs) recorded mainly from the occipital area of the brain. Accumulation of segmented windows (time locked averaging), Coiflet wavelet decomposition with dyadic filter bank and Principle Component Analysis (PCA) of three stages were utilized in order to decompose the recorded VEPs signal, to improve the Signal to Noise Ratio (SNR) and to reveal statistical information. The results shown that the wavelet transformation offer a significant SNR improvement at around four times compared to PCA as long as the shape of the original signal is retained. These techniques show significant advantages of decomposing the EEG signals into its details frequency bands

    Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

    Get PDF
    Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data of visual evoked potentials and extract time-locked signals with external visual stimulation. A bio-amplifier (iERG 100P) and data acquisition system (OMB-DAQ-3000) were utilized to record EEG raw data from the human scalp. MATLAB Data Acquisition Toolbox, Wavelet Toolbox, and Simulink model were employed to analyze EEG signals and extract VEP responses. Results: Results were verified in Simulink environment for the real recorded EEG data. The proposed model allowed precise decomposition and classification of VEP signals through the combined operation of DWT and SVD. DWT was successfully used for the decomposition of VEP signals to different frequencies followed by SVD for feature extraction and classification. Conclusion: The visual and quantitative results indicated that the impact of the proposed technique of combining DWT and SVD was promising. Combining the two techniques led to a two-fold increase in the impact of peak signal to noise ratio of all the tested signals compared to using each technique individually

    Prototype Design and Feasibility Analysis for Self-Levitated Conveying

    Get PDF
    In order to avoid friction and scratching when conveying object, an acoustic levitation prototype was designed to verify the feasibility. The modal shapes and the forced harmonic shapes of the prototype are obtained by an ANSYS coupled field computation with a one-quarter symmetry model and the levitation capacity was assessed by the use of groups of simulation and physical testing. The simulation results showed that the pure flexural and mixed flexural wave shapes with different wave numbers existed at some specific frequency. The amplitude in the central point of an aluminum plate having four piezo-electric discs glued to the bottom surface was simulated for a frequency spectrum. The experimental results confirmed the theoretical results and the feasibility of the prototype and confirm that objects can be floated at several resonant frequencies under forced vibrating condition. The system can provide largest bearing capacity when both the piezoelectric disc and the plate resonances coincide

    Cross coherence independent component analysis in resting and action states EEG discrimination

    Get PDF
    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes conditio

    Puzzle task ERP response: time-frequency and source localization analysis

    No full text
    Perceptual decision making depends on the choices available for the presented task. Most event-related potential (ERP) experiments are designed with two options, such as YES or NO. In some cases, however, subjects may become confused about the presented task in such a way that they cannot provide a behavioral response. This study aims to put subjects into such a puzzled state in order to address the following questions: How does the brain respond during puzzling moments? And what is the brain’s response to a non-answerable task? To address these questions, ERP were acquired from the brain during a scintillation grid illusion task. The subjects were required to count the number of illusory dots, a task that was impossible to perform. The results showed the presence of N130 over the parietal area during the puzzling task. Coherency among the brain hemispheres was enhanced with the complexity of the task. The neural generators’ source localizations were projected to a multimodal complex covering the left postcentral gyrus, supramarginal gyrus, and angular gyrus. This study concludes that the brain component N130 is strongly related to perception in a puzzling task network but not the visual processing network

    Puzzle task ERP response: time-frequency and source localization analysis

    No full text
    Perceptual decision making depends on the choices available for the presented task. Most event-related potential (ERP) experiments are designed with two options, such as YES or NO. In some cases, however, subjects may become confused about the presented task in such a way that they cannot provide a behavioral response. This study aims to put subjects into such a puzzled state in order to address the following questions: How does the brain respond during puzzling moments? And what is the brain's response to a non-answerable task? To address these questions, ERP were acquired from the brain during a scintillation grid illusion task. The subjects were required to count the number of illusory dots, a task that was impossible to perform. The results showed the presence of N130 over the parietal area during the puzzling task. Coherency among the brain hemispheres was enhanced with the complexity of the task. The neural generators' source localizations were projected to a multimodal complex covering the left postcentral gyrus, supramarginal gyrus, and angular gyrus. This study concludes that the brain component N130 is strongly related to perception in a puzzling task network but not the visual processing network

    A Novel Sustained Anti-Inflammatory Effect of Atorvastatin—Calcium PLGA Nanoparticles: In Vitro Optimization and In Vivo Evaluation

    No full text
    Atorvastatin Calcium (At-Ca) has pleiotropic effect as anti-inflammatory drug beside its main antihyperlipidemic action. Our study was conducted to modulate the anti-inflammatory effect of At-Ca to be efficiently sustained for longer time. Single oil-water emulsion solvent evaporation technique was used to fabricate At-Ca into polymeric nanoparticles (NPs). In vitro optimization survey was performed on Poly(lactide-co-glycolide) (PLGA) loaded with At-Ca regrading to particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (% EE), surface morphology and in vitro release pattern. In vitro drug-polymers interactions were fully scanned using Fourier-Transform Infrared Spectroscopy (FTIR) and Differential Scanning calorimetry (DSC) proving that the method of fabrication is an optimal strategy maintaining the drug structure with no interaction with polymeric matrix. The optimized formula with particle size (248.2 ± 15.13 nm), PDI (0.126 ± 0.048), zeta potential (−12.41 ± 4.80 mV), % EE (87.63 ± 3.21%), initial burst (39.78 ± 6.74%) and percent cumulative release (83.63 ± 3.71%) was orally administered in Male Sprague–Dawley rats to study the sustained anti-inflammatory effect of At-Ca PLGA NPs after carrageenan induced inflammation. In vivo results demonstrate that AT-Ca NPs has a sustained effect extending for approximately three days. Additionally, the histological examination revealed that the epidermal/dermal layers restore their typical normal cellular alignment with healthy architecture

    Water Quality and Radionuclides Content Assessment of the Al-Najaf Sea: Case Study

    No full text
    The Al-Najaf state is witnessing an increased economic development and attracting more investments that require the development of new areas and exploring new water resources. This study evaluates the quality of 12 surface water samples and groundwater from 12 wells for irrigation according to the salinity and sodicity hazards based on electrical conductivity (EC) and sodium adsorption ratio (SAR). In addition, the concentrations of radionuclides, which include Thorium (232Th), Uranium (238U), Potassium (40K) and Cesium (137Cs) were tested in four soil samples in the study area. It was found that the average values of pH, total hardness, Na, Ca, Mg, K, Cl, SO4, NO3 for groundwater and surface water were 8 and 6, 2287 and 4006 mg/L, 1140 and 1232 mg/L, 378 and 637 mg/L, 327 and 587 mg/L, 2 and 2 mg/L, 989 and 2007 mg/L, 1149 and 1325 mg/L, as well as 2 and 2 mg/L, respectively. From salinity and sodicity hazards analysis, the groundwater had EC of 5242 µS/cm and SAR of 61, whereas surface water had EC of 6253 µS/cm and SAR of 50. Furthermore, the concentrations of radionuclides, i.e. 232Th, 238U, 40K and 137Cs in the soil samples were found to be 11.02, 34.12, 544.45, and 1.6 Bq/kg, respectively. The concentrations of radionuclides were within the worldwide baseline, expect for 40K. The study concluded that both water sources are classified as very high salinity and sodium water (class C4-S4), and it cannot be used for irrigation, only suitable for the salt tolerant crops

    Development of oral formulation of <i>Lepidium</i> seeds significantly decreases the high blood glucose levels in diabetic rats: <i>in vitro</i> formulation and <i>in vivo</i> antidiabetic performance

    No full text
    Lepidium sativum, Garden Cress (GC), seeds have a lot of natural molecules with a pronounced activity against different disorders. It was reported that GC seeds have the ability to lower the blood glucose level. The aim of this work was to formulate GC seeds into oral tablets containing a fixed dose of the grounded seeds. Furthermore, the anti-diabetic performance of the prepared tablets was studied in the streptozotocin rats’ model in comparison with positive control metformin. Micrometrics of GC grounded seeds with different excipients were investigated. Then, GC tablets were prepared via direct compression technique. GC tablets were characterized for their uniformity of dosage unit, friability, hardness, disintegration time, and in vitro release. The antidiabetic effect was studied in rats for a period of 28 days. Glycosylated hemoglobin, liver performance, and lipid levels include total cholesterol (TC), triglycerides (TGs), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were also estimated. In addition, histopathological study of liver and pancreas was also performed. Prosolv®EasyTab produced tablets with higher hardness, lower disintegration time, and fast release. GC tablets significantly lower the elevated blood glucose level. In addition, they have antihyperlipidemic activity, hepatocellular protective role and restore the histology of the liver and pancreas. GC tablets could be a promising alternative formulation to control the high blood glucose level in diabetic rats rather than chemically derivatized drugs.</p
    corecore