2 research outputs found

    Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths

    No full text
    Organic–inorganic hybrid perovskite materials have recently evolved into the leading candidate solution-processed semiconductor for solar cells due to their combination of desirable optical and charge transport properties. Chief among these properties is the long carrier diffusion length, which is essential to optimizing the device architecture and performance. Herein, we used time-resolved photoluminescence (at low excitation fluence, 10.59 μJ·cm<sup>–2</sup> upon two-photon excitation), which is the most accurate and direct approach to measure the radiative charge carrier lifetime and diffusion lengths. Lifetimes of about 72 and 4.3 μs for FAPbBr<sub>3</sub> and FAPbI<sub>3</sub> perovskite single crystals have been recorded, presenting the longest radiative carrier lifetimes reported to date for perovskite materials. Subsequently, carrier diffusion lengths of 107.2 and 19.7 μm are obtained. In addition, we demonstrate the key role of the organic cation units in modulating the carrier lifetime and its diffusion lengths, in which the defect formation energies for FA cations are much higher than those with the MA ones

    Inside Perovskites: Quantum Luminescence from Bulk Cs<sub>4</sub>PbBr<sub>6</sub> Single Crystals

    No full text
    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission line width, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behavior, which is contradictory to the well-studied APbX<sub>3</sub> perovskites. In this work, we synthesize single crystals of Cs<sub>4</sub>PbBr<sub>6</sub> 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behavior reminiscent of a quantum confined structure rather than a typical bulk perovskite material
    corecore