1,131 research outputs found

    Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network

    Get PDF
    Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids

    DC fault isolation study of bidirectional dual active bridge DC/DC converter for DC transmission grid application

    Get PDF
    Fast isolation and detection of DC faults is currently a limiting factor in high power DC transmission grid development. Recent research has shown that the role of DC/DC converters is becoming increasingly important in solving various DC grid challenges such as voltage stepping, galvanic isolation and power regulation. This paper focuses on an additional important feature of bidirectional dual active bridge (DAB) DC-DC converters which make it attractive for future DC grids; it's inherent fault isolation capability which does not need control intervention to limit fault current in case of the most severe DC faults. Detailed analytical, simulation and experimental study are performed by subjecting the converter to DC short circuit faults at its DC voltage terminals. The results obtained have shown significant advantage of DAB where fault current is less than rated current during the fault duration. Thus no control action is necessary from the non-faulted bridge to limit fault current and no external DC circuit breakers are required. This advantage makes DAB converter feasible for DC grid integration

    Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization

    Get PDF
    This paper presents analysis of the non-isolated DC/DC triple active bridge (TAB) converter under various purely inductor-based AC link topologies. The objective of the analysis is to find the topology that incorporates the least value of the AC link inductors which leads to reduced converter footprint in addition to minimum internal current stresses. Modelling of the TAB under each of the different topologies is presented in per unit expressions of power transfer and reactive power assuming fundamental harmonic analysis. The power expressions are used to calculate the inductor values necessary to achieve same rated power transfer of Dual Active Bridge (DAB) converter for the sake of standardizing comparison. On this basis, the topology requiring the least value of interface inductors, hence lowest footprint, is identified. Furthermore, based on phase shift control, particle swarm optimization (PSO) is used to calculate optimal phase shift ratios in each of the proposed topologies to minimize reactive power loss (hence current stress). The topology with minimum stresses is therefore identified and the results are substantiated using a Matlab-Simulink model to verify the theoretical analysis

    Generic closed loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization

    Get PDF
    This paper presents a comprehensive and generalized analysis of the bidirectional dual active bridge (DAB) DC/DC converter using triple phase shift (TPS) control to enable closed loop power regulation while minimizing current stress. The key new achievements are: a generic analysis in terms of possible conversion ratios/converter voltage gains (i.e. Buck/Boost/Unity), per unit based equations regardless of DAB ratings, and a new simple closed loop controller implementable in real time to meet desired power transfer regulation at minimum current stress. Per unit based analytical expressions are derived for converter AC RMS current as well as power transferred. An offline particle swarm optimization (PSO) method is used to obtain an extensive set of TPS ratios for minimizing the RMS current in the entire bidirectional power range of - 1 to 1 per unit. The extensive set of results achieved from PSO presents a generic data pool which is carefully analyzed to derive simple useful relations. Such relations enabled a generic closed loop controller design that can be implemented in real time avoiding the extensive computational capacity that iterative optimization techniques require. A detailed Simulink DAB switching model is used to validate precision of the proposed closed loop controller under various operating conditions. An experimental prototype also substantiates the results achieved

    Modular multilevel converter with modified half-bridge submodule and arm filter for dc transmission systems with DC fault blocking capability

    Get PDF
    Although a modular multilevel converter (MMC) is universally accepted as a suitable converter topology for the high voltage dc transmission systems, its dc fault ride performance requires substantial improvement in order to be used in critical infrastructures such as transnational multi-terminal dc (MTDC) networks. Therefore, this paper proposes a modified submodule circuit for modular multilevel converter that offers an improved dc fault ride through performance with reduced semiconductor losses and enhanced control flexibility compared to that achievable with full-bridge submodules. The use of the proposed submodules allows MMC to retain its modularity; with semiconductor loss similar to that of the mixed submodules MMC, but higher than that of the half-bridge submodules. Besides dc fault blocking, the proposed submodule offers the possibility of controlling ac current in-feed during pole-to-pole dc short circuit fault, and this makes such submodule increasingly attractive and useful for continued operation of MTDC networks during dc faults. The aforesaid attributes are validated using simulations performed in MATLAB/SIMULINK, and substantiated experimentally using the proposed submodule topology on a 4-level small-scale MMC prototype

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    Generalized small-signal modelling of dual active bridge DC/DC converter

    Get PDF
    this paper presents a novel generalised approach of the small-signal modelling of dual active bridge (DAB) DC/DC converter. The adopted analysis is based on a per-unit fundamental frequency representation of the DAB. The outcome of the proposed modelling approach is a small signal, linearised, state-space DAB model; which is considered as a main building block for future control applications. The developed small signal DAB model includes all possible degrees of freedom affecting the performance of the DAB; this includes the voltage conversion ratio to allow the study of all DAB operation modes (i.e.: unity-gain and buck/boost modes.). Furthermore, since triple phase shift control (TPS) is used in this development work, the proposed model incorporates phase shift in addition to duty ratios. This feature allows for bridge voltage regulation, which is essential for efficient DAB operation in the case of buck/boost operation. Another key achievement is that the proposed small signal modelling methodology can be applied to any bidirectional DC-DC converter regardless of ratings, parameter values and number of ports. Extensive simulation is carried out to verify the proposed analysis

    Unconventional TV Detection using Mobile Devices

    Full text link
    Recent studies show that the TV viewing experience is changing giving the rise of trends like "multi-screen viewing" and "connected viewers". These trends describe TV viewers that use mobile devices (e.g. tablets and smart phones) while watching TV. In this paper, we exploit the context information available from the ubiquitous mobile devices to detect the presence of TVs and track the media being viewed. Our approach leverages the array of sensors available in modern mobile devices, e.g. cameras and microphones, to detect the location of TV sets, their state (ON or OFF), and the channels they are currently tuned to. We present the feasibility of the proposed sensing technique using our implementation on Android phones with different realistic scenarios. Our results show that in a controlled environment a detection accuracy of 0.978 F-measure could be achieved.Comment: 4 pages, 14 figure
    • …
    corecore