29 research outputs found

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE\u27s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4σ (5σ) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3σ for almost all true δCP values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-CY exposure for the maximally CP-violating values δCP=±π/2. Additionally, the dependence of DUNE\u27s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Evaluation Framework for the iTRACK Integrated System

    No full text
    Evaluation and testing are major steps in the development of any information system, particularly if it is to be used in high-risk contexts such as conflicts. While thus far there are various approaches for testing against technology requirements; usability or usefulness, there is a lack of a comprehensive evaluation framework that combines the three elements. The lack of such a framework and commonly agreed standards constitutes a barrier for innovation, and at the same time imposes risks to responders if the technology is introduced without proper testing. This paper aims to close this gap. Based on a reviewing of evaluation methods and measurement metrics, we design a comprehensive evaluation framework including common code quality testing metrics, usability testing methods, subjective usefulness questionnaires, and performance indicators. We demonstrate our approach by using the example of an integrated system for the safety and security of humanitarian missions, and we highlight how our approach allows measuring the system’s quality and usefulness.Transport and Logistic

    Copper Recovery Originating from Galvanic Industry

    No full text
    Document(en) uit de collectie Chemische ProcestechnologieDelftChemTechApplied Science

    Enhanced strength, durability, and thermal shock resistance of clay roof tiles substituted with ferrosilicon slag

    No full text
    The present investigation involved the production of roof tile samples through the replacement of kaolin clay with varying proportions of Ferrosilicon slag (FS) (0%, 10%, 15%, 20%, and 25% by weight) at different firing temperatures (900 °C, 1000 °C, and 1100 °C). The present study investigated the impact of incorporating FS slag waste on durability, mechanical strength, thermal shock resistance, and thermal properties. Furthermore, an examination of the microstructure of the fired roof tiles was conducted through SEM analysis. The properties of the roof tiles exhibited enhancement as the percentage of FS slag increased, reaching a maximum of 15%, and the firing temperature increased up to 1000 °C. This can be attributed to the formation of significant amounts of corundum phase. Increased temperature and a higher percentage of FS slag are associated with the generation of a significant quantity of cristobalite phase, resulting in a reduction in the mechanical properties of roof tiles. The roof tile samples fabricated with up to 15% FS slag at 1000 °C exhibited low water absorption and porosity. Increases in temperature and FS slag, on the other hand, resulted in an increase in water absorption and porosity. There were no observable impacts on water absorption and apparent porosity at 900 °C. The firing temperature of 1000 °C and a slag percentage of 15% resulted in a minimum water absorption of 9.8%. This value meets the standard requirements for moderate weather resistance. Notwithstanding the increase in density of roof tiles containing elevated proportions of FS slag, they continue to fall within the limits of lightweight roof tiles as stipulated by determined standards. The experimental results indicate that the incorporation of 15% FS slag and firing at a temperature of 1000 °C resulted in a significant increase of 34.9% in the transverse breaking strength (TBS) of the clay roof tiles when compared to the conventional sample. This suggests that the structural properties of the clay roof tiles were improved through the addition of FS slag.Water Resource

    Fractographic analysis of damage mechanisms dominated by delamination in composite laminates: A comprehensive review

    No full text
    Polymer composite laminates have established themselves as essential materials across a wide type of industrial fields because of their specific mechanical properties such as high strength and low weight. Among the main issues they face is susceptibility to delamination damage. This comprehensive review paper investigates various damage mechanisms and associated phenomena that obvious during delamination within polymer composite laminates. Delamination can primarily arise in Mode I, Mode II and mixed Mode I &II loading scenarios. Notably, the damage features can vary significantly between these conditions. This paper aims to characterize and identify delamination-dominated damage features by conducting a comprehensive examination of the parameters that influence these features, all based on an extensive literature review and utilizing fractography analysis. The findings of this review illustrate the valuable insights that can be obtained from delamination fracture surfaces through the utilization of fractography images and the examination of damage features. For instance, it is possible to recognize details such as determining of global crack growth direction, calculating the rate of fatigue crack growth, and anticipating of strain energy released rate. This deeper understanding aids in pinpointing the key factors contributing to delamination damage. It could offer valuable insights for designing composites resistant to delamination. Additionally, it may assist in determining the underlying causes of catastrophic failures in tragic events.Structural Integrity & CompositesMaterials and Environmen

    Multiport Hybrid Converter for Electrified Transportation Systems

    No full text
    Compact and efficient power converter solutions are seen to be the backbone of future transportation systems in order to cope with the ongoing transition toward greener systems. Such systems usually comprise a main load section, in which one or more propulsion or traction motors are connected, in addition to an auxiliary load, which might comprise the hotels and air conditioning for example. This auxiliary load can be as low as 5-10% of the main load power. Therefore, it can be challenging to drive this power from a typical high-power system that employs a medium-voltage (MV) dc (MVDC) grid, which is typical in high-power systems. In such MVDC-integrated systems, neutral-point-clamped and active neutral-point-clamped (ANPC) converters are commonly used, where the auxiliary load converter is overrated in this case, resulting in a bulky and inefficient power system. Thus, in order to enable a lighter and efficient transportation power system, a multiport hybrid converter (MHC) is presented in this article. This converter can feed the main MV motor, in addition to two auxiliary low-voltage loads. Compared with the state-of-the-art ANPC converter, the proposed MHC utilizes only two extra switches per phase leg in order to achieve this multiport operation along with increasing the voltage rating of another two switches. The proposed MHC is analyzed in this article, where its operation, modulation, and mathematical derivation are presented. These analyses are supported by simulation and experimental results utilizing a reduced-scale 5-kW system.DC systems, Energy conversion & Storag

    Polysulfone nanofiber-modified composite laminates: Investigation of mode-I fatigue behavior and damage mechanisms

    No full text
    In this study, the fatigue properties of carbon fiber-reinforced polymer (CFRP) composite laminates were investigated, specifically focusing on the incorporation of 100-µm polysulfone (PSU) nanofibers as an interleaving material. The PSU nanofibers were produced using the electrospinning technique. Both quasi-static and fatigue tests were conducted on both the reference specimens and the modified specimens to evaluate their mode-I performance. The results revealed an 85% increase in fracture toughness (GIC) under quasi-static testing. The fatigue plots revealed a noteworthy reduction in the fatigue crack growth rate (da/dN) for the modified specimens due to new toughening mechanisms. Scanning electron microscopy (SEM) demonstrated that, the PSU nanofiber became melted and distributed in the interface, leading to phase separation and a sea-island structure. The presence of PSU microspheres caused crack deflection during delamination, which resulted in increased fracture and fatigue resistance.Materials and Environmen
    corecore