6 research outputs found

    The Bengal Water Machine: Quantified freshwater capture in Bangladesh

    Get PDF
    Global food security depends on the sustainability of irrigated agriculture. Rising groundwater withdrawals from seasonally humid, alluvial plains across tropical Asia have enabled dry-season rice cultivation. This groundwater pumpage increases available subsurface storage that under favorable conditions amplifies groundwater replenishment during the subsequent monsoon. We empirically quantified this nature-based solution to seasonal freshwater storage capture described as the "Bengal Water Machine," revealing its potential and limitations. On the basis of a million piezometric observations from 465 monitoring wells, we show that the collective operation of ~16 million smallholder farmers in the Bengal Basin of Bangladesh from 1988 to 2018 has induced cumulative freshwater capture that volumetrically (75 to 90 cubic kilometers) is equivalent to twice the reservoir capacity of the Three Gorges Dam

    Stepped-wedge cluster-randomised controlled trial to assess the cardiovascular health effects of a managed aquifer recharge initiative to reduce drinking water salinity in southwest coastal Bangladesh: study design and rationale.

    Get PDF
    INTRODUCTION: Saltwater intrusion and salinisation have contributed to drinking water scarcity in many coastal regions globally, leading to dependence on alternative sources for water supply. In southwest coastal Bangladesh, communities have few options but to drink brackish groundwater which has been associated with high blood pressure among the adult population, and pre-eclampsia and gestational hypertension among pregnant women. Managed aquifer recharge (MAR), the purposeful recharge of surface water or rainwater to aquifers to bring hydrological equilibrium, is a potential solution for salinity problem in southwest coastal Bangladesh by creating a freshwater lens within the brackish aquifer. Our study aims to evaluate whether consumption of MAR water improves human health, particularly by reducing blood pressure among communities in coastal Bangladesh. METHODS AND ANALYSIS: The study employs a stepped-wedge cluster-randomised controlled community trial design in 16 communities over five monthly visits. During each visit, we will collect data on participants' source of drinking and cooking water and measure the salinity level and electrical conductivity of household stored water. At each visit, we will also measure the blood pressure of participants ≥20 years of age and pregnant women and collect urine samples for urinary sodium and protein measurements. We will use generalised linear mixed models to determine the association of access to MAR water on blood pressure of the participants. ETHICS AND DISSEMINATION: The study protocol has been reviewed and approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). Informed written consent will be taken from all the participants. This study is funded by Wellcome Trust, UK. The study findings will be disseminated to the government partners, at research conferences and in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02746003; Pre-results

    Drinking Water Salinity, Urinary Macro-Mineral Excretions, and Blood Pressure in the Southwest Coastal Population of Bangladesh.

    Get PDF
    Background Sodium (Na+) in saline water may increase blood pressure ( BP ), but potassium (K+), calcium (Ca2+), and magnesium (Mg2+) may lower BP . We assessed the association between drinking water salinity and population BP . Methods and Results We pooled 6487 BP measurements from 2 cohorts in coastal Bangladesh. We used multilevel linear models to estimate BP differences across water salinity categories: fresh water (electrical conductivity, <0.7 mS/cm), mild salinity (electrical conductivity ≥0.7 and <2 mS/cm), and moderate salinity (electrical conductivity ≥2 and <10 mS/cm). We assessed whether salinity categories were associated with hypertension using multilevel multinomial logistic models. Models included participant-, household-, and community-level random intercepts. Models were adjusted for age, sex, body mass index ( BMI ), physical activity, smoking, household wealth, alcohol consumption, sleep hours, religion, and salt consumption. We evaluated the 24-hour urinary minerals across salinity categories, and the associations between urinary minerals and BP using multilevel linear models. Compared with fresh water drinkers, mild-salinity water drinkers had lower mean systolic BP (-1.55 [95% CI : -3.22-0.12] mm Hg) and lower mean diastolic BP (-1.26 [95% CI : -2.21--0.32] mm Hg) adjusted models. The adjusted odds ratio among mild-salinity water drinkers for stage 1 hypertension was 0.60 (95% CI : 0.43-0.84) and for stage 2 hypertension was 0.56 (95% CI : 0.46-0.89). Mild-salinity water drinkers had high urinary Ca2+, and Mg2+, and both urinary Ca2+ and Mg2+ were associated with lower BP. Conclusions Drinking mild-salinity water was associated with lower BP , which can be explained by higher intake of Ca2+ and Mg2+ through saline water

    Drinking Water Salinity, Urinary Macro-Mineral Excretions, and Blood Pressure in the Southwest Coastal Population of Bangladesh.

    Get PDF
    Background Sodium (Na+) in saline water may increase blood pressure ( BP ), but potassium (K+), calcium (Ca2+), and magnesium (Mg2+) may lower BP . We assessed the association between drinking water salinity and population BP . Methods and Results We pooled 6487 BP measurements from 2 cohorts in coastal Bangladesh. We used multilevel linear models to estimate BP differences across water salinity categories: fresh water (electrical conductivity, <0.7 mS/cm), mild salinity (electrical conductivity ?0.7 and <2 mS/cm), and moderate salinity (electrical conductivity ?2 and <10 mS/cm). We assessed whether salinity categories were associated with hypertension using multilevel multinomial logistic models. Models included participant-, household-, and community-level random intercepts. Models were adjusted for age, sex, body mass index ( BMI ), physical activity, smoking, household wealth, alcohol consumption, sleep hours, religion, and salt consumption. We evaluated the 24-hour urinary minerals across salinity categories, and the associations between urinary minerals and BP using multilevel linear models. Compared with fresh water drinkers, mild-salinity water drinkers had lower mean systolic BP (-1.55 [95% CI : -3.22-0.12] mm Hg) and lower mean diastolic BP (-1.26 [95% CI : -2.21--0.32] mm Hg) adjusted models. The adjusted odds ratio among mild-salinity water drinkers for stage 1 hypertension was 0.60 (95% CI : 0.43-0.84) and for stage 2 hypertension was 0.56 (95% CI : 0.46-0.89). Mild-salinity water drinkers had high urinary Ca2+, and Mg2+, and both urinary Ca2+ and Mg2+ were associated with lower BP. Conclusions Drinking mild-salinity water was associated with lower BP , which can be explained by higher intake of Ca2+ and Mg2+ through saline water

    The hydrogeology of the Dupi Tila Sands Aquifer of the Barind Tract, NW Bangladesh

    Get PDF
    Barind in NW Bangladeshi is the land where life is written in water. Ground water is the life line for sustaining dry season agriculture. The sustainability of development in the area depends on the sustainability of the ground water resources. The Dupi Tila sands underlying the Barind Clay are a leaky confined aquifer with excellent hydraulic characteristics and ground water of good quality suitable for drinking and for irrigation. Continued development of the aquifer relies on sufficient recharge. A principal objective of this thesis is to investigate the recharge mechanism. This objective has been addressed by application of a hydrochemical and isotopic study and development of a water balance. The original contributions are put in context by a review of all the data relating to the Hydrogeology of the Barind. Recharge is principally derived as leakage through the Barind Clay, driven by a topographically induced hydraulic gradient which is enhanced by the effect of pumping. Irrigation boreholes set up ground water flow cells, each determining a similar chemistry for the abstracted ground water. Nevertheless chemical trends are observed which are used to deduce the hydrochemical evolution of the Dupi Tila ground water. The chemical and isotopic data show the bils to contribute a minor component to recharge. Isotope data illustrate a changing rainfall pattern over the last 3000 years. Judgement of the extent of development of the aquifer is shown to be dependent on the hydraulic conductivity attributed to the Barind Clay. There are indications that the Dupi Tila aquifer is already fully exploited. Further ground water development should not be undertaken without simultaneously monitoring piezometric conditions in the clay
    corecore