47,027 research outputs found

    Enhanced toluene removal using granular activated carbon and a yeast strain candida tropicalis in bubble-column bioreactors

    Get PDF
    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in abubble-column bioreactor, and the tolueneremoval efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The tolueneremoval efficiency was enhanced when granularactivatedcarbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated tolueneremoval efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m3/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m3/h at atoluene loading of 291 g/m3/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high tolueneremoval capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene

    Naval Engineering and Labor Specialization during the Industrial Revolution

    Get PDF
    This paper explores the roles of capital- and technology-skill complementarities in labor allocation decisions within the U.S. Navy. During the latter 19th century the ocer corps was highly specialized, and was split between groups of line and sta ocers. This was also a time of dramatic technological changes which aected nearly every facet of naval opera- tions. Specically, naval technological developments tended to be \engineering-biased," in that they raised the relative importance of engineer-oriented skills. This created a dilemma for the Navy, as it navigated the balance between the benets of a specialized workforce implementing increasingly complex technologies with rising communication and coordina- tion costs. We rst document the extent of capital- and technology-skill complementarities within the navy which fostered greater labor specialization. We then show how the Navy vitiated the specialized human capital of ocers by blending the corps. The study oers in- sights into how an industry undergoing wrenching technological changes managed its labor and human capital allocation to help the U.S. become a world class naval power.

    The Value of Human Capital during the Second Industrial Revolution—Evidence from the U.S. Navy

    Get PDF
    This paper explores the role of human capital on earnings and other measures of job performance during the late 19th century. During this time, U.S. Naval ocers belonged either to a regular or an engineer corps and had tasks assigned to their specialized training and experience. To test for the eects of specialized skills on performance, we compile educational data from original-source Naval Academy records for the graduating classes of 1858 to 1905. We merge these with career data extracted from official Navy registers for the years 1859 to 1907. This compilation comprises one of the longest and earliest longitudinal records of labor market earnings, education and experience of which we are aware. Our results suggest that greater technical skill translated into higher earnings early in careers, but wage premia diminished as careers progressed. From this evidence we argue that technical progress was more skill-depreciating than skill-biased during this period.

    Combined limits on WIMPs from the CDMS and EDELWEISS experiments

    Get PDF
    The CDMS and EDELWEISS collaborations have combined the results of their direct searches for dark matter using cryogenic germanium detectors. The total data set represents 614  kg·days equivalent exposure. A straightforward method of combination was chosen for its simplicity before data were exchanged between experiments. The results are interpreted in terms of limits on spin-independent weakly interacting, massive particle (WIMP)-nucleon cross section. For a WIMP mass of 90  GeV/c^2, where this analysis is most sensitive, a cross section of 3.3×10^(-44)  cm^2 is excluded at 90% C.L. At higher WIMP masses, the combination improves the individual limits, by a factor 1.6 above 700  GeV/c^2. Alternative methods of combining the data provide stronger constraints for some ranges of WIMP masses and weaker constraints for others

    Capillary waves at the liquid-vapor interface and the surface tension of water models

    Full text link
    Capillary waves occurring at the liquid-vapor interface of water are studied using molecular dynamics simulations. In addition, the surface tension, determined thermodynamically from the difference in the normal and tangential pressure at the liquid-vapor interface, is compared for a number of standard three- and four-point water models. We study four three-point models (SPC/E, TIP3P, TIP3P-CHARMM, and TIP3P-Ew) and two four-point models (TIP4P and TIP4P-Ew). All of the models examined underestimate the surface tension; the TIP4P-Ew model comes closest to reproducing the experimental data. The surface tension can also be determined from the amplitude of capillary waves at the liquid-vapor interface by varying the surface area of the interface. The surface tensions determined from the amplitude of the logarithmic divergence of the capillary interfacial width and from the traditional thermodynamic method agree only if the density profile is fitted to an error function instead of a hyperbolic tangent function.Comment: 11 pages, 8 figures, 7 tables. Accepted for publication in J. Chem. Phys. [v2: Added references, corrected minor errors

    Search for inelastic dark matter with the CDMS II experiment

    Get PDF
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events, the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10–100 keV

    Hyperbolic Metamaterial Resonator-Antenna Scheme for Large, Broadband Emission Enhancement and Single Photon Collection

    Full text link
    We model the broadband enhancement of single-photon emission from color centres in silicon carbide nanocrystals coupled to a planar hyperbolic metamaterial, HMM resonator. The design is based on positioning the single photon emitters within the HMM resonator, made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the lossy Fabry Perot structure modes arising within the high-index HMM cavity. To capture this broadband enhancement in the single photon emitters spontaneous emission, we placed a simple gold based cylindrical antenna on top of the HMM resonator. We analyzed the performance of this HMM coupled antenna structure in terms of the Purcell enhancement, quantum efficiency, collection efficiency and overall collected photon rate. For perpendicular dipole orientation relative to the interface, the HMM coupled antenna resonator leads to a significantly large spontaneous emission enhancement with Purcell factor of the order of 250 along with a very high average total collected photon rate, CPR of about 30 over a broad emission spectrum, 700 nm to 1000 nm. The peak CPR increases to about 80 at 900 nm, corresponding to the emission of silicon-carbide quantum emitters. This is a state of the art improvement considering the previous computational designs have reported a maximum average CPR of 25 across the nitrogen-vacancy centre emission spectrum, 600 nm to 800 nm with the highest value being about 40 at 650 nm

    Shear flow of angular grains: acoustic effects and non-monotonic rate dependence of volume

    Full text link
    Naturally-occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of auto-acoustic compaction -- non-monotonic variation of shear band volume with shear rate in angular particles -- recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone (STZ) theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration, and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions, and propose additional experiments that provide stringent tests on the new theoretical elements.Comment: 12 pages, 3 figure
    corecore