506 research outputs found

    Modification of Gelatin by Ciprofloxacin for Industrial Applications

    Get PDF
    Non-degradation of plastic materials have great impact on the environment and become a universal issue. So that, there is a necessity for environmentally friendly biomaterials as alternative materials of those have a non-degradable properties. Non-synthetic materials such as proteins and polysaccharides considered as a replacement materials of a non-degradable materials due to their ability to bio degradation properties. Gelatin considered one of the most candidate polymer for this purposes and can be synthesized by collagen hydrolysis. Gelatin can be used in different industries specifically in food packaging because of its ability to form film and gelling properties, low cost and biocompatible material. In this research, gelatin was modified with ciprofloxacin and the synthesized materials characterized by Fourier transform infrared (FTIR) and the surface was imaged by scanning electron microscopy (SEM)

    A Variable Speed Synchronous Motor Approach for Smart Irrigation using Doubly Fed Induction Motor

    Get PDF
    Department of Electrical Engineering, College of Engineering, Jazan University, Jizan 45142, Saudi Arabia.Doubly Fed Induction Motor (DFIM) is a popular machine used in variable speed drives, and its ruggedness, reliability and simplicity of speed control make it a suitable candidate for use in smart irrigation systems. This paper studies and evaluates the performance of DFIM at different operating conditions and shows that it can be viewed as a variable speed synchronous motor. The research results reveal that DFIM can be used to control the flow rate of water in irrigation systems, by adjusting the speed of the motor to match the desired flow rate. A mathematical model has been developed to optimize the performance of the DFIM in smart irrigation systems, taking into account the specific conditions of the application. In addition, an experimental setup was built and tested to enhance the theoretical results, which showed good correlation between the theoretical and experimental results. The results of this research demonstrate the potential of using the DFIM in smart irrigation systems to improve the performance and efficiency of irrigation and to provide better control and lower costs

    Association of polymorphisms of two histamine-metabolizing enzymes with allergic asthma in Egyptian children

    Get PDF
    Background: Histamine released from mast cells and basophils plays a key role in the development of allergic diseases such as allergic asthma, rhinitis or anaphylaxis. Histamine-metabolizing enzymes: N-methyltransferase (HNMT) and amiloride binding protein 1(ABP) are involved in allergic inflammation.Objective: This study was undertaken to evaluate the relationship between polymorphisms of two genes encoding the histamine metabolizing enzymes HNMT and ABP1 with the development of allergic asthma in Egyptian children.Methods: This is a case control study performed on 100 atopic asthmatic and 94 healthy control children. Conventional method of PCR amplification was used for genotyping.Results: Distribution of HNMT -105 Thr → Ile (-314 C to T) single nucleotide polymorphism (SNP) genotypes and Thr and Ile (C and T) alleles among patients and controls revealed significant increase in the frequencies of Thr / Ile (CT) and Thr / Ile (CT) + Ile / Ile (TT) in atopic asthmatics than in controls (p= 0.04 and 0.002 respectively). There was also a significant increase in Ile (T) alleles in atopic asthmatic patients than controls (p= 0.002). The 2029 CG SNP polymorphism of ABP1gene was significantly associated with atopic asthma (p=0.0003).Conclusion: The results of this study suggest that genetic variations in the histaminemetabolizing enzyme (HNMT and ABP1) genes might contribute to the pathogenesis of asthma in the studied children.Keywords: Amiloride binding protein, asthma, atopy, children, Nmethyltransferas

    Concurrent regulation of LKB1 and CaMKK2 in the activation of AMPK in castrate-resistant prostate cancer by a well-defined polyherbal mixture with anticancer properties

    Get PDF
    Abstract Background Zyflamend, a blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5′-adenosine monophosphate-activated protein kinase (AMPK), a master energy sensor of the cell. Clinically, treatment with Zyflamend and/or metformin (activators of AMPK) had benefits in castrate-resistant prostate cancer patients who no longer responded to treatment. Two predominant upstream kinases are known to activate AMPK: liver kinase B1 (LKB1), a tumor suppressor, and calcium-calmodulin kinase kinase-2 (CaMKK2), a tumor promotor over-expressed in many cancers. The objective was to interrogate how Zyflamend activates AMPK by determining the roles of LKB1 and CaMKK2. Methods AMPK activation was determined in CWR22Rv1 cells treated with a variety of inhibitors of LKB1 and CaMKK2 in the presence and absence of Zyflamend, and in LKB1-null HeLa cells that constitutively express CaMKK2, following transfection with wild type LKB1 or catalytically-dead mutants. Upstream regulation by Zyflamend of LKB1 and CaMKK2 was investigated targeting protein kinase C-zeta (PKCζ) and death-associated protein kinase (DAPK), respectively. Results Zyflamend’s activation of AMPK appears to be LKB1 dependent, while simultaneously inhibiting CaMKK2 activity. Zyflamend failed to rescue the activation of AMPK in the presence of pharmacological and molecular inhibitors of LKB1, an effect not observed in the presence of inhibitors of CaMKK2. Using LKB1-null and catalytically-dead LKB1-transfected HeLa cells that constitutively express CaMKK2, ionomycin (activator of CaMKK2) increased phosphorylation of AMPK, but Zyflamend only had an effect in cells transfected with wild type LKB1. Zyflamend appears to inhibit CaMKK2 by DAPK-mediated phosphorylation of CaMKK2 at Ser511, an effect prevented by a DAPK inhibitor. Alternatively, Zyflamend mediates LKB1 activation via increased phosphorylation of PKCζ, where it induced translocation of PKCζ and LKB1 to their respective active compartments in HeLa cells following treatment. Altering the catalytic activity of LKB1 did not alter this translocation. Discussion Zyflamend’s activation of AMPK is mediated by LKB1, possibly via PKCζ, but independent of CaMKK2 by a mechanism that appears to involve DAPK. Conclusions Therefore, this is the first evidence that natural products simultaneously and antithetically regulate upstream kinases, known to be involved in cancer, via the activation of AMPK.https://deepblue.lib.umich.edu/bitstream/2027.42/144515/1/12906_2018_Article_2255.pd

    Dr.

    Get PDF
    Department of Electrical Engineering, College of Engineering, Jazan University, Jizan 45142, Saudi Arabia

    Pendant modification of poly(methyl methacrylate) to enhance its stability against photoirradiation

    Get PDF
    Photostabilization of functional polymeric materials is important for protection against aging and ultraviolet (UV) irradiation. There is, therefore, the impetus to modify polymers to increase their resistance to photodegradation and photooxidation on extended exposure to UV light in harsh conditions. Various polymeric additives have been designed and synthesized in recent years, and their potential as photostabilizers has been explored. Reported here is the effect of pendant functionalization of poly(methyl methacrylate) (PMMA) through organometallic moiety incorporation into the polymer’s backbone. The reaction of PMMA with ethylenediamine leads to the formation of an amino residue that can react with salicylaldehyde to produce the corresponding Schiff base. Adding metal chlorides (zinc, copper, nickel, and cobalt) led to the formation of organometallic residues on the polymeric chains. Thin films of modified and unmodified PMMA were produced and irradiated with UV light to determine the effect of pendant modification on photostability. The photostabilization of PMMA was assessed using a range of methods, including infrared spectroscopy, weight loss, decomposition rate constant, and surface morphology. The modified PMMA incorporating organic Schiff base metal complexes showed less photodecomposition than the unmodified polymer or one containing the Schiff base only. Thus, the metals significantly reduced the photodegradation of polymeric materials. The polymer containing the Schiff base-cobalt unit showed the least damage in the PMMA surface due to photoirradiation, followed by those containing nickel, zinc, and copper, in that order

    Synthesis of new Norfloxacin-Tin complexes to mitigate the effect of ultraviolet-visible irradiation in polyvinyl chloride films

    Get PDF
    Polyvinyl chloride is used in the manufacturing of a wide range of products, but it is susceptible to degradation if exposed to high temperatures and sunlight. There is therefore a need to continuously explore the design, synthesis, and application of new and improved additives to reduce the photodegradation of polyvinyl chloride in harsh environments and for outdoor applications. This research investigates the use of new norfloxacin–tin complexes as additives to inhibit the photodegradation of polyvinyl chloride to make it last longer. Reactions between norfloxacin and substituted tin chlorides, in different molar ratios and in methanol under reflux conditions, gave the corresponding organotin complexes in high yields. The chemical structures of the synthesized complexes were established, and their effect on the photodegradation of polyvinyl chloride due to ultraviolet-visible irradiation was investigated. Norfloxacin–tin complexes were added to polyvinyl chloride at very low concentrations and homogenous thin films were made. The films were irradiated for a period of up to 300 h, and the damage that occurred was assessed using infrared spectroscopy, polymeric materials weight loss, depression in molecular weight, and surface inspection. The degree of photodegradation in the polymeric materials was much less in the blends containing norfloxacin–tin complexes compared to the case where no additives were used. The use of the additives leads to a reduction in photodegradation (e.g., a reduction in the formation of short-chain polymeric fragments, weight loss, average molecular weight depletion, and roughness factor) of irradiated polyvinyl chloride. The norfloxacin–tin complexes contain aromatic moieties (aryl and heterocycle), heteroatoms (nitrogen, oxygen, and fluorine), and an acidic center (tin atom). Therefore, they act as efficient photostabilizers by absorbing the ultraviolet radiation and scavenging hydrogen chloride, peroxides, and radical species, thereby slowing the photodegradation of polyvinyl chloride

    Substituted organotin complexes of 4-methoxybenzoic acid for reduction of poly(vinyl chloride) photodegradation

    Get PDF
    Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers

    Synthesis and application of levofloxacin–tin complexes as new photostabilizers for polyvinyl chloride

    Get PDF
    Polyvinyl chloride (PVC) is a synthetic polymer with a wide range of applications with impact on our daily life. It can undergo photodegradation with toxic products that are hazardous to both human health and the environment. In addition, photodegradation shortens the useful lifetime of the material. Elongation of the effective lifespan of PVC is, therefore, a salient area of research. Recently, a lot of attention has been directed toward the design, preparation, and usage of new additives that are capable of reducing the photodecomposition of PVC. This work investigates the synthesis of new levofloxacin-tin complexes and their potential exploitation against the photodecomposition of PVC. Several levofloxacin-tin complexes have been synthesized, in high yields, by a simple procedure and characterized. The potential use of the additives as photostabilizers for PVC has been investigated through the determination of weight loss, molecular weight depression, formation of fragments containing carbonyl and alkene groups, and surface morphology of irradiated PVC films. The results show that the new additives are effective in reducing the photodegradation of PVC. The new levofloxacin-tin complexes act as absorbers of ultraviolet light and quenchers of highly reactive species such as free radicals produced during photodegradation. They are more effective photostabilizers compared with organotin complexes previously reported. The complexes containing aromatic substituents were more effective than those counterparts having aliphatic residues

    Synthesis of methyldopa–tin complexes and their applicability as photostabilizers for the protection of polyvinyl chloride against photolysis

    Get PDF
    Polyvinyl chloride (PVC) is a ubiquitous thermoplastic that is produced on an enormous industrial scale to meet growing global demand. PVC has many favorable properties and is used in various applications. However, photodecomposition occurs when harsh conditions, such as high temperatures in the presence of oxygen and moisture, are encountered. Thus, PVC is blended with additives to increase its resistance to deterioration caused by exposure to ultraviolet light. In the current research, five methyldopa–tin complexes were synthesized and characterized. The methyldopa–tin complexes were mixed with PVC at a concentration of 0.5% by weight, and thin films were produced. The capability of the complexes to protect PVC from irradiation was shown by a reduction in the formation of small residues containing alcohols, ketones, and alkenes, as well as in weight loss and in the molecular weight of irradiated polymeric blends. In addition, the use of the new additives significantly reduced the roughness factor of the irradiated films. The additives containing aromatic substituents (phenyl rings) were more effective compared to those comprising aliphatic substituents (butyl and methyl groups). Methyldopa–tin complexes have the ability to absorb radiation, coordinate with polymeric chains, and act as radical, peroxide, and hydrogen chloride scavengers
    • …
    corecore