10 research outputs found

    Effect of internal and external damage on deterioration rate of shelled corn

    Get PDF

    Rheology of Selected Persian Honeys

    No full text

    Effects of high‐protein milk powder, linseed paste, and grape molasses levels on physiochemical, rheological, and sensory attributes of linseed spread

    No full text
    Abstract Separate levels of roasted linseed paste (RLP) (15, 22.5, and 30 g), Persian grape molasses (PGM) (40, 50, and 60 g), and high‐protein milk powder (HPMP) (3.75, 6.5, and 9.25 g) were ground and mixed in a ball mill (3 h at 45°C) to make samples of linseed spread (LS). After applying response surface methodology and central composite design, the optimized LS was obtained with 22.5 g RLP, 50 g PGM, 6.5 g HPMP, fine particle sizes ( 95%) with the ingredient's levels of LS samples. While the PV, aw, and acidity of optimized LS did not change even after 90‐day storage at 4°C, it showed viscoelastic properties and very low stickiness (0.2–0.4 mJ). Additionally, the hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness of optimized LS, respectively, decreased by 50, 25, 3, 8, 55, and 63% when its temperature increased from 4 to 25°C

    Application of electro-spraying technique and mathematical modelling for nanoencapsulation of curcumin

    No full text
    Electro-spraying Process (ESP) was used to coat extracted curcumin (CUR) with milk protein isolate (MPI) at equal concentration. The variables were applied voltage (AV), pumps flow rate ratio (PFRR) for coating (CUR with MPI), travelling distance (TD for coating and dehydration), ESE and MPI concentrations. They changed respectively from 7.5 to 27.5 kV, 2–10 times, and 5–25 cm, and 1.5–3.5% (w/w). When the MPI concentration, TD, PFRR, and AV of ESE reached respectively to 2.56 %, 16.64 cm, 6.77 times, and 19.06 kV; the resulting nanoparticle diameter and encapsulation efficiency of CUR coated (with MPI) became 232 nm (minimum) and 80.7% (maximum) values. The scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that the produced nanoparticles were bead-free, homogeneous, smooth surfaces, and >50% uniformity. While the nanoparticles of CUR had >70% heat resistance (up to 10 min at 120 °C against degradation), it had more than 100% antioxidant capacity in aqueous solution than its free form (because of its appropriate and intact coating). In-vitro studies showed that the nano encapsulated particles released >80% of CUR into the intestinal tract without significant release in simulated gastric fluid

    Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus) along with its color properties and structural stability

    Get PDF
    An aqueous solution of Pectinex (containing cellulase, hemicellulase, and pectinase) at 1%, 2.5%, 5%, 7%, and 10% concentrations and 40°C was used to extract anthocyanins (Acys) of saffron tepals at 20, 40, 60, 120 and 180 min reaction times and compared with ethanol solvent under similar conditions. The Acys of the Pectinex solution reached 6.7 mg/g of tepal powder (∼40% more than the ethanol method) when the enzyme concentrations and extraction times were, respectively, 5% and 60 min. The Acys of aqueous enzymes had three times slower degradation rates and 50% more attractive chroma color than the ones recovered by ethanol solution after 3 h of extraction time. Additionally, the Acys of the ethanol solution lost its content sharply (>45%) and its chroma changed quickly (due to the browning and polymerization). High performance liquid chromatography (HPLC) analysis showed that Acys extracted with mixed enzymes had about 80% more cyanidin 3-glucosides and 20% less pelargonidin 3,5-glucosides than with the ethanol method. Most probably, the high content of cyanidin 3-glycosides in enzyme-extracted Acys of saffron tepals was the key factor for its high stability
    corecore