15 research outputs found
Attributes of intestinal microbiota composition and their correlation with clinical primary non-response to anti-TNF-α agents in inflammatory bowel disease patients
The largest microbial aggregation in the human body exists in the gastrointestinal tract. The microbiota in the host gastrointestinal tract comprises a diverse ecosystem, and the intestinal microbiota plays a vital role in maintaining gut homeostasis. This study aims to examine whether the gut microbiota influences unresponsiveness to anti-TNF-α treatments in primary nonresponder patients, and consequently identify the responsible microbes as biomarkers of unresponsiveness. Stool samples were collected from a cohort of patients with an established diagnosis of IBD, either ulcerative colitis (UC) or Crohn’s disease (CD), following completion of the induction phase of anti TNF therapy. 16S rRNA sequencing analysis was used to examine the pattern of microbiota communities in fecal samples. The quality and quantity of fecal microbiota were compared in responder and primary nonresponder IBD patients following anti-TNF-α therapy. As per our hypothesis, a difference in gut microbiome composition between the two patient subgroups was observed. A decreased abundance of short-chain fatty acid (SCFA)-producing bacteria, including Anaerostipes, Coprococcus, Lachnospira, Roseburia, and Ruminococcus, was detected in non-responsive patients, which was the hallmark of dysbiosis. Biomarkers of dysbiosis that were identified as predictors of clinical nonresponse, included Klebsiella, Eubacteriaceae, RF32, Bifidobacterium_animalis, and Muribaculaceae—previously known as S24-7. Signature biomarkers showed dramatic alteration in the composition of gut microbiota in patients who demonstrated primary nonresponse to anti-TNF-α agents. Dysbiosis, with features including a dropped biodiversity, augmentation in opportunistic pathogenic microbiota, and a lack of SCFA-producing bacteria, is a prominent feature of the microbiome of primary nonresponders to anti-TNF-α therapy
Intestinal Macrophages and Intestinal Infection
There has been increased interest in the role played by macrophages in the maintenance of an active immune system and intestinal homeostasis. Nonetheless, they are also responsible for the rise of chronic pathologies such as inflammatory bowel syndrome in the gut. The lack of differentiation of monocytes in the intestines due to disease conditions leads to a fall in the diversity of microbiota and subsequent gut inflammation. Macrophages play a central role in the homeostasis and immunity of the gut, making them potential sources of novel therapies or remedies for inflammatory bowel disease (IBD) patients. To explore this possibility, this research discusses their structure, differentiation, and functionality in an in-depth manner. It will also describe their role in the local intestinal environment and how it changes upon infection. Finally, the paper will outline its conclusions as well as comment on the future outlook of related research.</jats:p
Exogenous zinc mitigates salinity stress by stimulating proline metabolism in proso millet (Panicum miliaceum L.).
Salinity is one of the most concerning ecological restrictions influencing plant growth, which poses a devastating threat to global agriculture. Surplus quantities of ROS generated under stress conditions have negative effects on plants’ growth and survival by damaging cellular components, including nucleic acids, lipids, proteins and carbohydrates. However, low levels of ROS are also necessary because of their role as signalling molecules in various development-related pathways. Plants possess sophisticated antioxidant systems for scavenging as well as regulating ROS levels to protect cells from damage. Proline is one such crucial non-enzymatic osmolyte of antioxidant machinery that functions in the reduction of stress. There has been extensive research on improving the tolerance, effectiveness, and protection of plants against stress, and to date, various substances have been used to mitigate the adverse effects of salt. In the present study Zinc (Zn) was applied to elucidate its effect on proline metabolism and stress-responsive mechanisms in proso millet. The results of our study indicate the negative impact on growth and development with increasing treatments of NaCl. However, the low doses of exogenous Zn proved beneficial in mitigating the effects of NaCl by improving morphological and biochemical features. In salt-treated plants, the low doses of Zn (1 mg/L, 2 mg/L) rescued the negative impact of salt (150mM) as evidenced by increase in shoot length (SL) by 7.26% and 25.5%, root length (RL) by 21.84% and 39.07% and membrane stability index (MSI) by 132.57% and 151.58% respectively.The proline content improved at all concentrations with maximum increase of 66.65% at 2 mg/L Zn. Similarly, the low doses of Zn also rescued the salt induced stress at 200mM NaCl. The enzymes related to proline biosynthesis were also improved at lower doses of Zn. In salt treated plants (150mM), Zn (1 mg/L, 2 mg/L) increased the activity of P5CS by 19.344% and 21%. The P5CR and OAT activities were also improved with maximum increase of 21.66% and 21.84% at 2 mg/L Zn respectively. Similarly, the low doses of Zn also increased the activities of P5CS, P5CR and OAT at 200mM NaCl. Whereas P5CDH enzyme activity showed a decrease of 82.5% at 2mg/L Zn+150mM NaCl and 56.7% at 2mg/L Zn+200 mM NaCl. These results strongly imply the modulatory role of Zn in maintaining of proline pool during NaCl stress
Biochemical exploration of family GH119 reveals a single α-amylase specificity and confirms shared catalytic machinery with GH57 enzymes
While hundreds of starch- and glycogen-degrading enzymes have been characterized experimentally in historical families such as GH13, GH14, GH15, GH57 and GH126 of the CAZy database (www.cazy.org), the α-amylase from Bacillus circulans is the only enzyme that has been characterized in family GH119. Since glycosidase families have been shown to often group enzymes with different substrates or products, a single characterized enzyme in a family is insufficient to extrapolate enzyme function based solely on sequence similarity. Here we report the rational exploration of family GH119 through the biochemical characterization of five GH119 members. All enzymes shared single α-amylase specificity but display distinct product profile. We also report the first kinetic constants in family GH119 and the first experimental validation of previously predicted catalytic residues in family GH119, confirming that families GH119 and GH57 can be grouped in the novel clan GH-S of the CAZy database
Attributes of intestinal microbiota composition and their correlation with clinical primary nonresponse to anti-TNF-α agents in inflammatory bowel disease patients
The largest microbial aggregation in the human body exists in the gastrointestinal tract. The microbiota in the host gastrointestinal tract comprises a diverse ecosystem, and the intestinal microbiota plays a vital role in maintaining gut homeostasis. This study aims to examine whether the gut microbiota influences unresponsiveness to anti-TNF-α treatments in primary nonresponder patients, and consequently identify the responsible microbes as biomarkers of unresponsiveness. Stool samples were collected from a cohort of patients with an established diagnosis of IBD, either ulcerative colitis (UC) or Crohn’s disease (CD), following completion of the induction phase of anti TNF therapy. 16S rRNA sequencing analysis was used to examine the pattern of microbiota communities in fecal samples. The quality and quantity of fecal microbiota were compared in responder and primary nonresponder IBD patients following anti-TNF-α therapy. As per our hypothesis, a difference in gut microbiome composition between the two patient subgroups was observed. A decreased abundance of short-chain fatty acid (SCFA)-producing bacteria, including Anaerostipes, Coprococcus, Lachnospira, Roseburia, and Ruminococcus, was detected in non-responsive patients, which was the hallmark of dysbiosis. Biomarkers of dysbiosis that were identified as predictors of clinical nonresponse, included Klebsiella, Eubacteriaceae, RF32, Bifidobacterium_animalis, and Muribaculaceae—previously known as S24-7. Signature biomarkers showed dramatic alteration in the composition of gut microbiota in patients who demonstrated primary nonresponse to anti-TNF-α agents. Dysbiosis, with features including a dropped biodiversity, augmentation in opportunistic pathogenic microbiota, and a lack of SCFA-producing bacteria, is a prominent feature of the microbiome of primary nonresponders to anti-TNF-α therapy. </jats:p
Exogenous zinc mitigates salinity stress by stimulating proline metabolism in proso millet (Panicum miliaceum L.)
Salinity is one of the most concerning ecological restrictions influencing plant growth, which poses a devastating threat to global agriculture. Surplus quantities of ROS generated under stress conditions have negative effects on plants’ growth and survival by damaging cellular components, including nucleic acids, lipids, proteins and carbohydrates. However, low levels of ROS are also necessary because of their role as signalling molecules in various development-related pathways. Plants possess sophisticated antioxidant systems for scavenging as well as regulating ROS levels to protect cells from damage. Proline is one such crucial non-enzymatic osmolyte of antioxidant machinery that functions in the reduction of stress. There has been extensive research on improving the tolerance, effectiveness, and protection of plants against stress, and to date, various substances have been used to mitigate the adverse effects of salt. In the present study Zinc (Zn) was applied to elucidate its effect on proline metabolism and stress-responsive mechanisms in proso millet. The results of our study indicate the negative impact on growth and development with increasing treatments of NaCl. However, the low doses of exogenous Zn proved beneficial in mitigating the effects of NaCl by improving morphological and biochemical features. In salt-treated plants, the low doses of Zn (1 mg/L, 2 mg/L) rescued the negative impact of salt (150mM) as evidenced by increase in shoot length (SL) by 7.26% and 25.5%, root length (RL) by 21.84% and 39.07% and membrane stability index (MSI) by 132.57% and 151.58% respectively.The proline content improved at all concentrations with maximum increase of 66.65% at 2 mg/L Zn. Similarly, the low doses of Zn also rescued the salt induced stress at 200mM NaCl. The enzymes related to proline biosynthesis were also improved at lower doses of Zn. In salt treated plants (150mM), Zn (1 mg/L, 2 mg/L) increased the activity of P5CS by 19.344% and 21%. The P5CR and OAT activities were also improved with maximum increase of 21.66% and 21.84% at 2 mg/L Zn respectively. Similarly, the low doses of Zn also increased the activities of P5CS, P5CR and OAT at 200mM NaCl. Whereas P5CDH enzyme activity showed a decrease of 82.5% at 2mg/L Zn+150mM NaCl and 56.7% at 2mg/L Zn+200 mM NaCl. These results strongly imply the modulatory role of Zn in maintaining of proline pool during NaCl stress.</jats:p
Investigating the bacterial community of gray mangroves (Avicennia marina) in coastal areas of Tabuk region
Mangrove vegetation, a threatened and unique inter-tidal ecosystem, harbours a complex and largely unexplored bacterial community crucial for nutrient cycling and the degradation of toxic pollutants in coastal areas. Despite its importance, the bacterial community composition of the gray mangrove (Avicennia marina) in the Red Sea coastal regions remains under-studied. This study aims to elucidate the structural and functional diversity of the microbiome in the bulk and rhizospheric soils associated with A. marina in the coastal areas of Ras Alshabaan-Umluj (Umluj) and Almunibrah-Al-Wajh (Al-Wajh) within the Tabuk region of Saudi Arabia. Amplicon sequencing targeting the 16S rRNA was performed using the metagenomic DNAs from the bulk and rhizospheric soil samples from Umluj and Al-Wajh. A total of 6,876 OTUs were recovered from all samples, of which 1,857 OTUs were common to all locations while the total number of OTUs unique to Al-wajh was higher (3,011 OTUs) than the total number of OTUs observed (1,324 OTUs) at Umluj site. Based on diversity indices, overall bacterial diversity was comparatively higher in rhizospheric soil samples of both sites. Comparing the diversity indices for the rhizosphere samples from the two sites revealed that the diversity was much higher in the rhizosphere samples from Al-Wajh as compared to those from Umluj. The most dominant genera in rhizosphere sample of Al-Wajh were Geminicoccus and Thermodesulfovibrio while the same habitat of the Umluj site was dominated by Propionibacterium, Corynebacterium and Staphylococcus. Bacterial functional potential prediction analyses showed that bacteria from two locations have almost similar patterns of functional genes including amino acids and carbohydrates metabolisms, sulfate reduction and C-1 compound metabolism and xenobiotics biodegradation. However, the rhizosphere samples of both sites harbour more genes involved in the utilization and assimilation of C-1 compounds. Our results reveal that bacterial communities inhabiting the rhizosphere of A. marina differed significantly from those in the bulk soil, suggesting a possible role of A. marina roots in shaping these bacterial communities. Additionally, not only vegetation but also geographical location appears to influence the overall bacterial composition at the two sites
In vitro Anti-candida Activity of Different Saudi Honeys and Honey Mixed with Taifi Rose Oil
ABSTRACT: Candida albicans is a common human yeast that infect several epithelial tissues including vagina. The increase of drug-resisting C. albicans encouraged the researchers to find alternative treatment. Honey medical signatures such as bactericidal, antifungal and anti-candida made it a possible candidate for disease treatment. In addition, rose essential oil possesses a wide range of biochemical activities in folkloric medicine including anti-microbial activities. The present research utilizes honey alone or in conjunction with Taifi rose (Rosa damascena) oil as anti-candida agent to treat vaginal candidiasis. Three local monof oral honeys from different flower sources and/or geographic origins were tested with four concentrations (50, 80 and 95%), while two concentrations of the Taifi rose oil (1 and 2%). anti-candida activity of honey alone or in conjunction with Taifi rose oil was determined as well as phenolic and flavonoids contents were determined. Also, GC-MS analysis of volatile oils and alkaloids were evaluated. The results of this study indicated that acidity is within the allowed range for commercialization and long-lasting storage. All honeys tested inhibited completely the C. albicans growth at concentrations 80% and 95% either incubation after 48 or 72 h. Also, only Markh and Manuka honeys were completely inhibited C. albicans growth at 50% concentration. Also, C. albicans growth inhibited completely at 2% Taifi rose oil after the incubation periods of 48 and 72 h. The phenolic compounds and flavonoids were analysed by mass spectrometry analysis which revealed the Markh honey showed the presence of gallic acid and quercetin that proved to have antifungal activity. It could be concluded that mixed Markh honey and Taifi rose oil treatment was capable to inhibit C. albicans growth completely. Further research is required to determine the anti-candida activity of the mixture of Markh honey and Taifi rose oil in the human body as a new therapeutic drug to treat vaginal candidiasis.</jats:p
Gut Microbiome of Two Different Honeybee Workers Subspecies In Saudi Arabia.
Honeybees play a vital role in the world’s food supply by acting as essential pollinators in the agricultural fields. Interestingly, more than one third of the world’s essential crops are honeybee’s dependant. The adult honeybeeworkers harbour a simple specific bacterial spectrum in their guts with vital role in bees’ health. Gut microbial diversity of adult honeybee workerswasstudied through targeting the V3 and V4 regions of the 16S rRNA geneviaIllumina MiSeq. The study identified four phyla of the gut microbiomesinadult workersof the two-honeybee subspecies A.m. jemeniticaandA.m. carnica. The most abundant phylum in microbiome of A.m. jemeniticawasFirmicutes (48%), while Protobacteria and Actinobacteriaphylawere less abundantat figures of31% and 10%, respectively. In microbiome of A.m. carnica,Firmicutes (57%) was also the most dominant phylum, while Protobacteria and Actinobacteria had lower prevalence at figures of 31% and 10%, respectively. At genus level, adult honeybee workers harboured a number ofLactobacillus spp.in their guts with relative abundance of 80% in A.m. jemeniticaworkers compared to52%forA.m. carnicaworkers.Up toour knowledge, this is the first study of its kind on gut microbiome diversity inhoneybee workersof different origins conducted in Saudi Arabia using high-throughput 16S rRNA gene sequencing technology. The results indicatedthat the variability inmonophyletic origin of host of honeybee workers affectedgut microbiota composition.</jats:p
