8 research outputs found

    Effect of different parameters controlling the flexural behavior of RC beams strengthened with NSM using nonlinear finite element analysis

    Get PDF
    Near surface mounted technique become the most attractive technique for strengthening RC structures. Several researches had been conducted to study experimentally the flexural behavior of RC members strengthened with NSM technique unlike the numerical researches. In this paper a numerical investigation utilizes the non-linear finite element (FE) modeling using ANSYS was performed. The developed FE model considers the behavior of the epoxy-concrete interface using a particular continuum damage approach, called cohesive zone model (CZM) which is capable of predicting the failure mode of the strengthened beams. The modified model study the effect of different parameters such as NSM bar number, NSM bar length, end inclination angle and end inclination leg length on the flexural behavior of strengthened beams. The results showed that, The developed FE model able to predict the expected modes of failure in NSM technique, the NSM bar length was effective till 0.5 of beam span, beams strengthened with end inclined angle 45º NSM bar gives the highest improvement in load carrying capacity, this improvement was very close in case of using end inclined angle of 60º and 90º

    Experimental assessment of different strengthening techniques for opening in reinforced concrete beams

    Get PDF
    The present experimental study includes testing thirteen reinforced concrete beams with openings at different locations to investigate the efficiency of strengthening such openings. Different strengthening techniques around the opening after and before casting include diagonal bars, upper and lower steel, and carbon fiber reinforced polymers (CFRP), were examined. All beams were made from 30 MPa compressive strength and tested under four-point loading.  The cross section of the beams is 400 mm depth x 160 mm width and beam length 2400 mm. The dimensions of the opening are 200 mm x 200 mm. The stiffness, deflection, failure load, and failure mode of the strengthened beams were discussed. Experimental results showed that the beams strengthened with upper and lower steel around opening at mid-span increase the load-carrying capacity by 16.59%. However, beams strengthened by CFRP sheets around the opening in the shear zone increase the load carrying capacity by 47.7% compared to opened beam

    Residual strength and toughness after impact loading for RC slabs strengthened with different layers of geogrid

    No full text
    This study presents an experiment for investigating the residual strength and toughness of reinforced concrete, RC, and slab reinforced by a geogrid as shrinkage reinforcement along with lower tensile steel reinforcement. Three different parameters were considered, slab thickness, number of geogrid layers, and thickness of the upper concrete cover. Fifteen slab samples with sizes of 50 × 50 cm exposed to the impact load on its center before being re-load by the static load and six slab samples exposed to the static load only. The load and deflection relation were recorded through the static loading process for all specimens, where loading capacity, toughness, and toughness index were measured. The results show an enhancement in the slabs residual strength as the slab thickness and concrete cover increased. On the other hand, the residual strength of slabs has a remarkable decrease with the increase in geogrid layers. Moreover, the toughness has a positive relationship with the concrete cover and has an inverse relation with the slab thickness and the number of layers. A geogrid reduced the number and distribution of cracks and mitigated their severity, especially for double layers with the same concrete cover

    Mechanical properties of sustainable concrete comprising various wastes

    No full text
    Abstract Due to the rapid increase of pollution around the world, the disposal of waste materials such as granite powder (GP), iron powder (IP), brick powder (BP), and waste plastic particles (PP) is a major environmental problem in the entire world. Utilizing these industrial waste materials has many advantages for the construction industry regarding cost-effectiveness and the sustainability of natural resources. This investigation examined the addition of GP, IP, BP, and PP as a fine aggregate with ratios of 5%, 10%, 15%, and 20% of sand in producing and assessing sustainable concrete. The static properties, i.e., compressive, tensile, flexural strength, and dynamic properties using the drop-weight impact test, were evaluated of such materials. The results showed that using IP as a partial replacement enhances both static and dynamic properties of concrete; the enhancement kept increasing up to 20% of IP, and the compressive, tensile, flexural strength, and impact energy increased by 8.4%, 12.5%, 8.5, and 125%, respectively. Therefore, IP can be suggested to replace sand by up to 20%. Using PP up to 15% enhanced the impact energy at failure by about 225%. It also observed that the optimum value for GP and BP was 10%. When using 10% GP the increase in the compressive, tensile, flexural strength, and impact energy was 11.7%, 25%, 21.5%, and 100%, respectively, while it increased by 12.9%, 7.6%, 15.4%, and 63% respectively when using BP

    Enhancing Flexural Resistance in Pre-Damaged RC Beams with Near-Surface Mounted GFRP Bar and Bolt Anchoring System

    No full text
    The objective of this research was to explore the mechanical properties and failure mechanisms of reinforced concrete beams (RC beams) strengthened with near-surface mounted (NSM) glass fiber-reinforced polymer (GFRP) bars. This study focused on evaluating the effect of various factors on the load-deflection response and failure patterns of RC beams, including pre-existing damage, end anchorage, bar length, bar number, and the condition of concrete cover. The tested RC beams were divided into three groups. The first group included undamaged and damaged control beams. The second group involved the strengthening of beams after inducing damage, with variations in bar length, number, and cross-sectional area. This group also included beams strengthened by GFRP bars with and without anchors. In the third group, the effects of different cover materials, cover bonding techniques, and anchor bolts on the strengthening bars were examined. The results of the experiment indicated a notable decrease in both cracking and maximum load capacity for beams that were pre-damaged. The inclusion of anchor bolts appeared to have a noticeable effect, enhancing the load-carrying capacity and reducing mid-span deflection. Opting for two bars proved to be more effective than using three bars, leading to a higher maximum load and improved ductility. Moreover, prioritizing the bonding of the concrete cover at the end of the bars was found to be more important than bonding in the area of maximum moment

    Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control

    No full text

    Physicians' guideline adherence is associated with long-term heart failure mortality in outpatients with heart failure with reduced ejection fraction: the QUALIFY international registry

    No full text
    Background: Physicians' adherence to guideline-recommended therapy is associated with short-term clinical outcomes in heart failure (HF) with reduced ejection fraction (HFrEF). However, its impact on longer-term outcomes is poorly documented. Here, we present results from the 18-month follow-up of the QUALIFY registry. Methods and results: Data at 18 months were available for 6118 ambulatory HFrEF patients from this international prospective observational survey. Adherence was measured as a continuous variable, ranging from 0 to 1, and was assessed for five classes of recommended HF medications and dosages. Most deaths were cardiovascular (CV) (228/394) and HF-related (191/394) and the same was true for unplanned hospitalizations (1175 CV and 861 HF-related hospitalizations, out of a total of 1541). According to univariable analysis, CV and HF deaths were significantly associated with physician adherence to guidelines. In multivariable analysis, HF death was associated with adherence level [subdistribution hazard ratio (SHR) 0.93, 95% confidence interval (CI) 0.87–0.99 per 0.1 unit adherence level increase; P = 0.034] as was composite of HF hospitalization or CV death (SHR 0.97, 95% CI 0.94–0.99 per 0.1 unit adherence level increase; P = 0.043), whereas unplanned all-cause, CV or HF hospitalizations were not (all-cause: SHR 0.99, 95% CI 0.9–1.02; CV: SHR 0.98, 95% CI 0.96–1.01; and HF: SHR 0.99, 95% CI 0.96–1.02 per 0.1 unit change in adherence score; P = 0.52, P = 0.2, and P = 0.4, respectively). Conclusion: These results suggest that physicians' adherence to guideline-recommended HF therapies is associated with improved outcomes in HFrEF. Practical strategies should be established to improve physicians' adherence to guidelines. © 2019 The Authors. European Journal of Heart Failure © 2019 European Society of Cardiolog
    corecore