48 research outputs found
Sorptive Interactions of Fungicidal 2-(4'-Thiazolyl) Benzimidazole with Soils of Divergent Physicochemical Composition
Thiabendazole, 2-(4'-thiazolyl) Benzimidazole fungicide is rampantly used in Pakistan for controlling fungalgrowth in addition to combating various fungus driven diseases. Thiabendazole leaching and mobility patterns can beeasily predicted through investigation of Thiabendazole adsorption and desorption behavior in soils. Present work iscarried out by conducting a batch equilibration experiment for evaluation of Thiabendazole adsorption and desorption insoils from four diverse Pakistani climatological regions. Data revealed Thiabendazole had moderate to weak adsorption inselected soils with distribution co-efficient Kd(ads) ranging from 13.33 to 24.04 µg/ml in selected soils. The TBZ adsorptionin soils best fitted with Freundlich model (R2>0.87). The Freundlich adsorption coefficient (Kf(ads)) values ranged from4.51 to 8.90 µg/ml. Thiabendazole adsorption trends in the selected soils were positively influenced by the clay contentand soil organic matter while it was negatively influenced by soils’ pH. The Freundlich desorption coefficient (Kf(des))values spanned over a range of 1.03 to 6.43 µg/ml indicating decreased desorption from soils with creditable affinities forThiabendazole adsorption. The adsorptive interactions between Thiabendazole and selected soils were primarily physicalconfirmed through lower values of Gibbs free energy ∆G ≤ - 40kJ/mol. Thiabendazole desorption was highly hysterical inall soils with profound irreversibility. Thiabendazole possessed medium mobility patterns in selected soils. The loweradsorptive capability of Thiabendazole in selected soils points towards its lower application rates for combating long termenvironmentally perilous implications
Sorptive Interactions Evaluation of Benomyl Metabolites Mecarzole with the Varyingly Selected Minerals
Soil and soil minerals are the primary recipients of different contaminates coming in immediate contact.Agricultural practices which are dominated by use of different agrochemicals have further aggravated the soil quality.Fungicides, aimed at the extermination, inhibition and growth retardation of fungal species in agricultural crops havebeen used frequently. Among such fungicides, Benzimidazole based fungicides are of prime significance due to theircomparatively improved annihilatory activity. Despite such frequent utilization, the reports on the reception andconsequent sorption of Benzimidazole fungicides are scarce. Current work has, for the first time, investigated theinteraction of Benzimidazole based fungicide, Mecarzole (metabolite of Benomyl fungicide and also known asCarbendazim) in the selected minerals i.e. corundum (alumina), silica, muscovite and montmorillonite. The interactionwas studied via standard equilibration method established in batches. Adsorption and desorption of Mecarzole in theselected minerals was evaluated by multilayer Linear and Freundlich model for different parameters i.e. Kd, Kf, Kfdesand Kdes. Linearity was exhibited by the minerals for attachment of Mecarzole. The highest values of Kd (6.93 mL. µg-1) and Kf (7.99 mL. µg-1) obtained for muscovite are indicative of the higher affinity of muscovite for Mecarzole incomparison to other three minerals. Excellent adsorption of Mecarzole in muscovite is suggestive of the fact thatMecarzole interacting with muscovite is not a threat towards lower soil profiles since there is a stronger bonding. Incontrast to muscovite, Mecarzole poorly adsorbed in alumina represents a threat to soils due to possible percolation ofpoorly adsorbed Mecarzole molecules
1-(Adamantan-1-ylcarbonyl)-3-(2,6-difluoro-4-hydroxyphenyl)thiourea
In the title molecule, C18H20F2N2O2S, the 2,6-difluoro-4-hydroxyphenyl ring and the carbonylthiourea group are each essentially planar, with maximum deviations of atoms from their mean planes of 0.0113 (14) and 0.1017 (15) Å, respectively; the dihedral angle between these two planes is 71.03 (6)°. An intramolecular N—H⋯O hydrogen bond occurs. In the crystal, N—H⋯O and O—H⋯S hydrogen bonds connect the molecules into chains running diagonally across the bc plane. C—H⋯S and C—H⋯F contacts are also observed
Usability Evaluation of Online Educational Applications in COVID-19
COVID-19 is a pandemic faced by almost every country in the world, this has resulted in health crisis. Due to COVID-19, all the countries around the world have decided to close all educational institutes to prevent this pandemic. Educational institutes have taken every possible measure to minimize the impact of the closure of schools and introduce the concept of an online education system which is not only a massive shock for parents but it also affects the children's learning process and social life. The educational applications (Apps) are very important, because they offer more opportunities for development and growth to society. In this pandemic situation, educational Apps like Zoom, HEC LMS, Google Classroom, and Skype, etc. are the need of the hour when everything goes online. In this paper, the usability features of online educational Apps are thoroughly discussed including the effectiveness and usability for students. Using the results obtained from the survey, this paper observes the student's perspective of usefulness of online educational Apps in student’s learning process of different age groups. It also analyzes the easiness for students to understand, interact and use these Apps
Foliar-mediated Ag:ZnO nanophotocatalysts: green synthesis, characterization, pollutants degradation, and in vitro biocidal activity
A green, biomimetic, and one-pot synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles via hydrothermal route utilizing Prunus cerasifera leaf extract has been reported for the first time. Synthetic route involved optimization for leaf extract. Doped nanoparticles were characterized for crystalline, optical, compositional, and morphological makeup via X-ray diffraction (XRD), ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. Direct energy bandgap was calculated through Tauc plot. The incorporation of Ag+ into Zn2+ sites within ZnO crystal was obtained using leaf extract as a reducing agent. Ag inculcated positional modifications in ZnO structure confirmed via XRD-shifted peaks. Ag:ZnO nanoparticles were found to be an efficient nanophotocatalyst against bromocresol green and bromophenol blue (R2=0.83 and 0.95, respectively) in direct solar irradiance. Degradation efficiencies up to 86% and 95% in less than 15min were achieved. Furthermore, the synthesized doped nanoparticles expressed highly active to active zones of inhibition against nine microbes of pathogenic nature toward human and crops. Doped nanoparticles inhibitory activity was found to exceed standard antibiotic drugs ampicillin and amphotericin B in a standard Kirby-Bauer disc diffusion assay. Creditable photocatalytic and antimicrobial activities of synthesized doped nanoparticles signify their prospects in commercialization into nanophotocatalyst and bactericidal/fungicidal agent at industrial scale
Adsorption and sugarcane-bagasse-derived activated carbon-based mitigation of 1-[2-(2-chloroethoxy)phenyl]sulfonyl-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl) urea-contaminated soils
Burgeoning pesticide usage in agriculture sector required to be evaluated by assessing the adsorption rate in soils. The herbicide triasulfuron was used in this research to analyze its sorption behavior in seven distinct soils using batch equilibrium methodology. The adsorption coefficient (Kd) values ranged from the 3.32 to 29.7 µg/mL. Peshawar soil displayed the highest Kd value because of the distinct physiochemical properties when compared with the other six samples. Gibbs free energy exhibited negative values displaying less contact between soil particles and pesticides, showing the exothermic nature of the phenomena. A negative association was observed between the pH of the soil samples and Kd (R2 = −0.71) but a direct relation with the organic content (R2 = 0.74). Triasulfuron mitigation was performed by the economical remediation of soils using acid-activated charcoal prepped from Saccharum officinarum husk. Activated carbon derived from biomass displayed the great potential for triasulfuron removal from soils