2,177 research outputs found

    Quantum Gravity - Testing Time for Theories

    Get PDF
    The extreme smallness of both the Planck length, on the one side, and the ratio of the gravitational to the electrical forces between, say, two electrons, on the other side has led to a widespread belief that the realm of quantum gravity is beyond terrestrial experiments. A series of classical and quantum arguments are put forward to dispel this view. It is concluded that whereas the smallness of the Planck length and the ratio of gravitational to electrical forces, does play its own essential role in nature, it does not make quantum gravity a science where humans cannot venture to probe her secrets. In particular attention is drawn to the latest neutron and atomic interferometry experiments, and to gravity wave interferometers. The latter, as Giovanni Amelino-Camelia argues [Nature 398, 216 (1999)], can be treated as probes of space-time fuzziness down to Planck length for certain quantum-gravity models

    Front Form Spinors in Weinberg-Soper Formalism and Melosh Transformations for any Spin

    Full text link
    Using the Weinberg-Soper formalism we construct the front form (j,0)(0,j)(j,0)\oplus(0,j) spinors. Explicit expressions for the generalised Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces spin one half front-form results of Melosh, Lepage and Brodsky, and Dziembowski.Comment: 16 Pages, RevTex. We continue to receive reprint requests for this paper. So we now archive it her

    Phase field simulations of coupled phase transformations in ferroelastic-ferroelastic nanocomposites

    Full text link
    We use phase field simulations to study composites made of two different ferroelastics (e.g., two types of martensite). The deformation of one material due to a phase transformation can elastically affect the other constituent and induce it to transform as well. We show that the phase transformation can then occur above its normal critical temperature and even higher above this temperature in nanocomposites than in bulk composites. Microstructures depend on temperature, on the thickness of the layers, and on the crystal structure of the two constituents -- certain nanocomposites exhibit a great diversity of microstructures not found in bulk composites. Also, the periodicity of the martensite twins may vary over 1 order of magnitude based on geometry. keywords: Ginzburg-Landau, martensitic transformation, multi-ferroics, nanostructure, shape-memory alloyComment: 8 pages, 15 figure

    Neutrino oscillations with disentanglement of a neutrino from its partners

    Full text link
    We bring attention to the fact that in order to understand existing data on neutrino oscillations, and to design future experiments, it is imperative to appreciate the role of quantum entanglement. Once this is accounted for, the resulting energy-momentum conserving phenomenology requires a single new parameter related to disentanglement of a neutrino from its partners. This parameter may not be CP symmetric. We illustrate the new ideas, with potentially measurable effects, in the context of a novel experiment recently proposed by Gavrin, Gorbachev, Veretenkin, and Cleveland. The strongest impact of our ideas is on the resolution of various anomalies in neutrino oscillations and on neutrino propagation in astrophysical environments.Comment: 6 page

    A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    Get PDF
    We introduce a new function, the apparent elastic modulus strain-rate spectrum, (Formula presented.), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ((Formula presented.)). The (Formula presented.) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant (Formula presented.) input. Material viscoelastic parameters can be rapidly derived by fitting experimental (Formula presented.) data obtained at different strain rates to the (Formula presented.) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials

    Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity

    Get PDF
    We introduce a new effect in the neutrino oscillation phase which shows the neutrino-antineutrino oscillation is possible under gravity even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. For Majorana neutrinos, this oscillation is expected to affect significantly the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis. On the other hand, in early universe, in presence of various lepton number violating processes, this oscillation, we argue, might lead to neutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes.Comment: 15 pages; Accepted for publication in Classical and Quantum Gravit

    Special relativity with two invariant scales: Motivation, Fermions, Bosons, Locality, and Critique

    Full text link
    We present a Master equation for description of fermions and bosons for special relativities with two invariant scales, SR2, (c and lambda_P). We introduce canonically-conjugate variables (chi^0, chi) to (epsilon, pi) of Judes-Visser. Together, they bring in a formal element of linearity and locality in an otherwise non-linear and non-local theory. Special relativities with two invariant scales provide all corrections, say, to the standard model of the high energy physics, in terms of one fundamental constant, lambda_P. It is emphasized that spacetime of special relativities with two invariant scales carries an intrinsic quantum-gravitational character. In an addenda, we also comment on the physical importance of a phase factor that the whole literature on the subject has missed and present a brief critique of SR2. In addition, we remark that the most natural and physically viable SR2 shall require momentum-space and spacetime to be non-commutative with the non-commutativity determined by the spin content and C, P, and T properties of the examined representation space. Therefore, in a physically successful SR2, the notion of spacetime is expected to be deeply intertwined with specific properties of the test particle.Comment: Int. J. Mod. Phys. D (in press). Extended version of a set of two informal lectures given in "La Sapienza" (Rome, May 2001

    The effect of very low energy solar neutrinos on the MSW mechanism

    Full text link
    We study some implications on standard matter oscillations of solar neutrinos induced by a background of extremely low energy thermal neutrinos trapped inside the Sun by means of coherent refractive interactions. Possible experimental tests are envisaged and current data on solar neutrinos detected at Earth are briefly discussed.Comment: RevTex4, 4 pages, no figure
    corecore