59 research outputs found

    Seniors with Parkinson's Disease: Initial Medical Treatment

    Get PDF
    Parkinson's disease most often presents after age 60, and patients in this age group are best managed with levodopa therapy as the primary treatment modality. Unlike young-onset parkinsonism (onset <age 40), this older age group is much less prone to subsequent development of levodopa responsive instability (dyskinesias, fluctuations). When these problems do occur in seniors, they usually can be managed by medication adjustments. The treatment goal is to keep patients active and engaged; levodopa dosage should be guided by the patients' responses and not arbitrarily limited to low doses, which may compromise patients' lives

    Does α-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease?

    Get PDF
    Abstractα-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ≤27 or Alzheimer's Disease Dementia Screening Interview score ≥2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HR = 0.87, p = 0.046, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HR = 0.90, p = 0.12, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression

    A Genomic Pathway Approach to a Complex Disease: Axon Guidance and Parkinson Disease

    Get PDF
    While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 × 10−38), survival free of PD (hazards ratio = 19.0, p = 5.43 × 10−48), and PD age at onset (R2 = 0.68, p = 1.68 × 10−51). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers

    Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15)

    Get PDF
    Mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, an autosomal recessive neurodegenerative disease presenting with severe levodopa-responsive parkinsonism and pyramidal disturbances. Understanding the PARK15 pathogenesis might thus provide clues on the mechanisms of maintenance of brain dopaminergic neurons, the same which are lost in Parkinson's disease. The protein(s) encoded by FBXO7 remain very poorly characterized. Here, we show that two protein isoforms are expressed from the FBXO7 gene in normal human cells. The isoform 1 is more abundant, particularly in primary skin fibroblasts. Both isoforms are undetectable in cell lines from the PARK15 patient of an Italian family; the isoform 1 is undetectable and the isoform 2 is severely decreased in the patients from a Dutch PARK15 family. In human cell lines and mouse primary neurons, the endogenous or over-expressed, wild type FBXO7 isoform 1 displays mostly a diffuse nuclear localization. An intact N-terminus is needed for the nuclear FBXO7 localization, as N-terminal modification by PARK15-linked missense mutation, or N-terminus tag leads to cytoplasmic mislocalization. Furthermore, the N-terminus of wild type FBXO7 (but not of mutant FBXO7) is able to confer nuclear localization to profilin (a cytoplasmic protein). Our data also suggest that overexpressed mutant FBXO7 proteins (T22M, R378G and R498X) have decreased stability compared to their wild type counterpart. In human brain, FBXO7 immunoreactivity was highest in the nuclei of neurons throughout the cerebral cortex, intermediate in the globus pallidum and the substantia nigra, and lowest in the hippocampus and cerebellum. In conclusion, the common cellular abnormality found in the PARK15 patients from the Dutch and Italian families is the depletion of the FBXO7 isoform 1, which normally localizes in the cell nucleus. The activity of FBXO7 in the nucleus appears therefore crucial for the maintenance of brain neurons and the pathogenesis of PARK15

    Frequency, characteristics, and risk factors for amiodarone neurotoxicity

    No full text
    Objective: To assess the incidence, severity, and spectrum of neurologic toxic effects associated with administration of amiodarone hydrochloride. Design: Retrospective medical record analysis of cardiac patients treated with amiodarone between January 1, 1996, and July 31, 2008. Setting: Residents of Olmsted County, Minnesota, treated at the Mayo Clinic. Patients: The Mayo Clinic medical records of all adult Olmsted County residents prescribed amiodarone between January 1, 1996, and July 31, 2008, were reviewed and all possible neurologic adverse effects that might be attributable to amiodarone were tabulated. Main Outcome Measures: Risk factors and clinical characteristics of patients developing neurologic problems were compared with those who did not. Results: Over the 151 months of analysis, 707 patients were treated with amiodarone. Among these patients, the cumulative incidence of likely amiodarone neurotoxic effects was 2.8%; 1.6% of all amiodarone-treated patients were referred to Neurology for a neurotoxic reaction. Neurologic problems included tremor, gait ataxia, peripheral neuropathy, and cognitive impairment. The primary risk factor for amiodarone neurotoxic effects was duration of treatment, not age, drug dose, sex, or indication for therapy. Where this could be assessed, the adverse effects were usually but not always reversible. Conclusions: Amiodarone infrequently causes clinically significant neurologic toxic effects. Substantially higher estimates of neurotoxic effects in the early amiodarone era may be related to a much higher daily dose.5 page(s

    Rasagiline, Parkinson neuroprotection, and delayed-start trials: Still no satisfaction?

    No full text
    Rasagiline has been studied as a Parkinson disease (PD) neuroprotective agent in 2 major clinical trials, utilizing the delayed-start design in an attempt to separate symptomatic drug benefits from a disease-modifying effect. The ostensibly positive outcomes of these studies, however, are obscured by potential confounding factors that seem intrinsic to this trial design, including 1) very small changes in clinical outcome measures that could easily be overshadowed by other influences; 2) probable incomplete blinding to study end; 3) subjective components of the Unified Parkinson's Disease Rating Scale (UPDRS) scoring system; and 4) practice influences from repeated scoring. Interpretation of the recent Attenuation of Disease Progression with Azilect Given Once-daily (ADAGIO) trials is especially problematic given 1) divergent results with the 2 symptomatically beneficial doses and 2) variability in UPDRS scores with active rasagiline, which was twice the magnitude of the major finding of the study. These studies further illustrate the difficulty in documenting a disease-modifying effect when considering a PD drug with symptomatic benefit

    REPLY TO DRS. OLANOW AND RASCOL

    No full text

    Cheaper, Simpler, and Better: Tips for Treating Seniors With Parkinson Disease

    No full text
    Treatment of seniors with Parkinson disease is within the domain of primary care physicians and internists. A good working knowledge of carbidopa/levodopa principles should allow excellent care of most patients, at least during the early years of the disease. Even later, when levodopa responses become more complicated (eg, dyskinesias, motor fluctuations, insomnia, anxiety), levodopa adjustments may be all that is necessary. A dozen tips for optimizing treatment of Parkinson disease are discussed herein

    Beyond Parkinson disease: amyotrophic lateral sclerosis and the axon guidance pathway.

    Get PDF
    We recently described a genomic pathway approach to study complex diseases. We demonstrated that models constructed using single nucleotide polymorphisms (SNPs) within axon guidance pathway genes were highly predictive of Parkinson disease (PD) susceptibility, survival free of PD, and age at onset of PD within two independent whole-genome association datasets. We also demonstrated that several axon guidance pathway genes represented by SNPs within our final models were differentially expressed in PD.Here we employed our genomic pathway approach to analyze data from a whole-genome association dataset of amyotrophic lateral sclerosis (ALS); and demonstrated that models constructed using SNPs within axon guidance pathway genes were highly predictive of ALS susceptibility (odds ratio = 1739.73, p = 2.92x10(-60)), survival free of ALS (hazards ratio = 149.80, p = 1.25x10(-74)), and age at onset of ALS (R(2) = 0.86, p = 5.96x10(-66)). We also extended our analyses of a whole-genome association dataset of PD, which shared 320,202 genomic SNPs in common with the whole-genome association dataset of ALS. We compared for ALS and PD the genes represented by SNPs in the final models for susceptibility, survival free of disease, and age at onset of disease and noted that 52.2%, 37.8%, and 34.9% of the genes were shared respectively.Our findings for the axon guidance pathway and ALS have prior biological plausibility, overlap partially with PD, and may provide important insight into the causes of these and related neurodegenerative disorders
    corecore