60 research outputs found
Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma
Using kinetic theory for homogeneous collisionless magnetized plasmas, we
present an extended review of the plasma waves and instabilities and discuss
the anisotropic response of generalized relativistic dielectric tensor and
Onsager symmetry properties for arbitrary distribution functions. In general,
we observe that for such plasmas only those electromagnetic modes whose
magnetic field perturbations are perpendicular to the ambient magneticeld,
i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique
propagation all modes do show such anisotropic effects. Considering the
non-relativistic bi-Maxwellian distribution and studying the relevant
components of the general dielectric tensor under appropriate conditions, we
derive the dispersion relations for various modes and instabilities. We show
that only the electromagnetic R- and L- waves, those derived from them and the
O-mode are affected by thermal anisotropies, since they satisfy the required
condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and
the modes derived from it (the pure transverse X-mode and Bernstein mode) show
no such effect. In general, we note that the thermal anisotropy modifies the
parallel propagating modes via the parallel acoustic effect, while it modifies
the perpendicular propagating modes via the Larmor-radius effect. In oblique
propagation for kinetic Alfven waves, the thermal anisotropy affects the
kinetic regime more than it affects the inertial regime. The generalized fast
mode exhibits two distinct acoustic effects, one in the direction parallel to
the ambient magnetic field and the other in the direction perpendicular to it.
In the fast-mode instability, the magneto-sonic wave causes suppression of the
firehose instability. We discuss all these propagation characteristics and
present graphic illustrations
Evaluation of 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole as a Novel Anti-Inflammatory Drug Candidate
BACKGROUND: 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole (DIC) is a five-membered heterocyclic compound containing a N-O bond. The anti-inflammatory effects of this compound were studied both in vitro and in vivo. PRINCIPAL FINDINGS: DIC effectively decreased TNF-α and IL-6 release from LPS-stimulated macrophages in a dose dependent manner. DIC diminished the levels of COX-2 with subsequent inhibition of PGE(2) production. DIC also compromised HMGB1 translocation from the nucleus to the cytoplasm. Moreover, DIC prevented the nuclear translocation of NF-κB and inhibited the MAPK pathway. In vivo, DIC inhibited migration of neutrophils to the peritoneal cavity of mice. CONCLUSIONS: This study presents the potential utilization of a synthetic compound, as a lead for the development of novel anti-inflammatory drugs
TNFRSF1B +676 T>G polymorphism predicts survival of non-Small cell lung cancer patients treated with chemoradiotherapy
<p>Abstract</p> <p>Background</p> <p>The dysregulation of gene expression in the TNF-TNFR superfamily has been involved in various human cancers including non-small cell lung cancer (NSCLC). Furthermore, functional polymorphisms in <it>TNF-α </it>and <it>TNFRSF1B </it>genes that alter gene expression are likely to be associated with risk and clinical outcomes of cancers. However, few reported studies have investigated the association between potentially functional SNPs in both <it>TNF-α </it>and <it>TNFRSF1B </it>and prognosis of NSCLC patients treated with chemoradiotherapy.</p> <p>Methods</p> <p>We genotyped five potentially functional polymorphisms of <it>TNF-α </it>and <it>TNFRSF1B </it>genes [<it>TNF-α </it>-308 G>A (rs1800629) and -1031 T>C (rs1799964); <it>TNFRSF1B </it>+676 T>G (rs1061622), -1709A>T(rs652625) and +1663A>G (rs1061624)] in 225 NSCLC patients treated with chemoradiotherapy or radiotherapy alone. Kaplan-Meier survival analysis, log-rank tests and Cox proportional hazard models were used to evaluate associations between these variants and NSCLC overall survival (OS).</p> <p>Results</p> <p>We found that the <it>TNFRSF1B </it>+676 GG genotype was associated with a significantly better OS of NSCLC (GG <it>vs. </it>TT: adjusted HR = 0.38, 95% CI = 0.15-0.94; GG <it>vs. </it>GT/TT: adjusted HR = 0.35, 95% CI = 0.14-0.88). Further stepwise multivariate Cox regression analysis showed that the <it>TNFRSF1B </it>+676 GG was an independent prognosis predictor in this NSCLC cohort (GG <it>vs. </it>GT/TT: HR = 0.35, 95% CI = 0.14-0.85), in the presence of node status (N<sub>2-3 </sub><it>vs. </it>N<sub>0-1</sub>: HR = 1.60, 95% CI = 1.09-2.35) and tumor stage (T<sub>3-4 </sub><it>vs. </it>T<sub>0-2</sub>: HR = 1.48, 95% CI = 1.08-2.03).</p> <p>Conclusions</p> <p>Although the exact biological function for this SNP remains to be explored, our findings suggest a possible role of <it>TNFRSF1B </it>+676 T>G (rs1061622) in the prognosis of NSCLC. Further large and functional studies are needed to confirm our findings.</p
Effect of Shot Size and Peening Pressure on the Low Stress Abrasive Wear Behavior of Annealed Medium Carbon Steel
The effect of shot size and peening pressure on abrasive wear of annealed medium carbon steel has been studied. The peening pressure was varied between 3-5 bar and shot size in the rangenbsp of 0.6-1.00 mm at fixed peening intensity of 0.27A.The low stress abrasive wear tests were conducted using dry abrasion test rig TR-38 at an applied load of 50 N. It was noted in general, that the wear rate decreases with increase in sliding distance. It is interestingly noted that the minimum wear rate is observed at 0.8 mm shot size and 4 bar peening pressure. Further, decrease or increase in peening pressure or shot size leads to higher wear rate. This has been understood from the surface and the subsurface microstructures, work hardening and residual stress distribution after shot peening. The wear rate further correlated empirically with peening parameters.nbs
Designing of High Comfort, Reliable and Economical Driver
Abstract — To design and develop a comfortable driver’s seat, cheaper in cost and adds value to the customer is an important issue in an automotive industry. It is tough to design such a driver car seat. However, taking account all these things many researchers have put effort to design and developed a driver car seat considering various aspects (e.g. Biomechanical, materials, vibration absorption, safety etc.) which provides more comfortable value to driver with safety and operational durability, but still having a chance to do improvement in design and material to get an ideal designed driver car seat. This work aims to design and develop optimum driver car seat which is ergonomically satisfied have less weight and cheaper in cost. The modelling of a new driver car seat is done on AUTODESK INVENTOR software. In a new design, driver car seat lever system is replaced by a press button mechanism and an automatic seat adjusting lock system used to restrict the movement. The nylon material is used to fabricate the seat and simulation is done by using Autodesk Inventor software
- …