120 research outputs found

    Electromagnetic ion-cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function - particle aspect analysis

    No full text
    International audienceThe effect of parallel electric field on the growth rate, parallel and perpendicular resonant energy and marginal stability of the electromagnetic ion-cyclotron (EMIC) wave with general loss-cone distribution function in a low ? homogeneous plasma is investigated by particle aspect approach. The effect of the steepness of the loss-cone distribution is investigated on the electromagnetic ion-cyclotron wave. The whole plasma is considered to consist of resonant and non-resonant particles. It is assumed that resonant particles participate in the energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effect of the parallel electric field with the general distribution function is to control the growth rate of the EMIC waves, whereas the effect of steep loss-cone distribution is to enhance the growth rate and perpendicular heating of the ions. This study is relevant to the analysis of ion conics in the presence of an EMIC wave in the auroral acceleration region of the Earth's magnetoplasma

    Beam effect on electromagnetic ion-cyclotron waves with general loss ? cone distribution function in an anisotropic plasma-particle aspect analysis

    Get PDF
    International audienceThe effect of upgoing ion beam and temperature anisotropy on the dispersion relation, growth rate, parallel and perpendicular resonant energies, and marginal instability of the electromagnetic ion cyclotron (EMIC) waves, with general loss-cone distribution function, in a low ? homogeneous plasma, is discussed by investigating the trajectories of the charged particles. The whole plasma is considered to consist of resonant and non-resonant particles. The resonant particles participate in an energy exchange with the waves, whereas the non-resonant particles support the oscillatory motion of the waves. The effects of the steepness of the loss-cone distribution, ion beam velocity, with thermal anisotropy on resonant energy transferred, and the growth rate of the EMIC waves are discussed. It is found that the effect of the upgoing ion beam is to reduce the energy of transversely heated ions, whereas the thermal anisotropy acts as a source of free energy for the EMIC waves and enhances the growth rate. It is found that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of an upflowing ion beam and a steep loss-cone distribution function in the anisotropic magnetoplasma. The effect of the steepness of the loss-cone is also to enhance the growth rate of the EMIC waves. The results are interpreted for EMIC emissions in the auroral acceleration region

    Development of compressed meat based bar using response surface methodology

    Get PDF
    Studies were carried out to optimize the percentage of ingredients for the development of ready to eat mutton bar. Central composite rotatable design of response surface methodology (RSM) was used for designing the experimental combinations. Matrix for compression was designed by selecting factors like mutton powder, binders and applied pressure. Protein percentage, hardness and over all acceptability (OAA) were taken as responses. OAA and hardness showed highly significant and fitted with quadratic model whereas other response i.e. protein levels found to be significant and fitted with linear model. From the design of experiments 45g/100g of mutton powder with 5g/100g binders having an applied pressure of 142 kg/cm2 yielded a bar having a protein percentage of 35g/100g with a hardness of 20.9 N with an overall acceptability score of 8.6 ±0.2 on a 9 point hedonic scale. The product gives energy of 393 kcal per 100 g

    Power Rotational Interleaver on an Idma System

    Get PDF
    In this paper we are proposing an interleaver design i.e. power rotational interleaver. The basic purpose of this design is to reduce the bandwidth occupied by the interleaver. This approach provides an efficient result for multiple users. The complexity of this design is same as that of master random interleaver while the bandwidth requirement is reduced up to a great extent. On the basis of simulation results it is concluded that the performance of power rotational interleaver is as good as that is of random interleaver. Keywords: Master random interleaver, a posteriori probability, tree based interleaver

    A STUDY OF MANAGEMENTAL PRACTICES IN WATER BUFFALO (BUBALUS BUBALIS) IN INDIA

    Get PDF
    ABSTRACT Comparative evaluation of farmers of rural and urban areas of Indore district of Madhya Pradesh, India was undertaken in terms of various managemental practices followed on the basis of herd size among different classes of farmers, and their housing, feeding, breeding and health coverage practices in buffaloes. In rural areas, a significantly higher number (59.33%) of farmers had mud houses with mud floors, whereas in urban areas, 68% farmers had Kiln-dried brick houses with concrete floors. In rural areas, the space available per animal was adequate in all cases but in urban areas, 68% of the respondents had inadequate space per animal. Feeding of green fodder throughout year in both rural and urban areas was practiced. A significantly higher number (88%) of urban farmers offered balanced ration to their animals as compared to rural farmers. In rural areas, only 9.66% of the farmers bred their animals with A.I., and 90.33% preferred natural service. More urban farmers followed cross breeding and grading up as breed improvement practices as compared to rural farmers. The analysis revealed that the rural buffalo gives less profit in comparison to those in urban areas due to lack of scientific animal husbandry practice and the low price of milk in addition to poor fluid milk marketing

    COMPARISON OF RP-HPLC AND UV SPECTROPHOTOMETRIC METHODS FOR ESTIMATION OF HALOPERIDOL IN PURE AND PHARMACEUTICAL FORMULATION

    Get PDF
    An accurate, precise, sensitive and reproducible High-performance liquid chromatographic (HPLC) and UV spectrophotometric methods were developed and validated for the quantitative determination of haloperidol (HPD) in bulk drug and pharmaceutical formulation. Different analytical performance parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD) and limit of quantification (LOQ) were determined according to International Conference on Harmonization ICH Q2B guidelines. The RP-HPLC method was developed by the isocratic technique on a reversed-phase Thermo C18 (250 × 4.6 mm, 5µm) column with mobile phase consisting of Methanol: Acetonitrile (50:50v/v) at flow rate of 1.0 ml/min. The retention time for HPD was 2.238±0.3min. The UV spectrophotometric determinations were performed at 244 nm using 80% methanol as a solvent. The linearity range for HPD was 5-25 μg/ml for both HPLC and UV method. The linearity of the calibration curves for each analyte in the desired concentration range was good (r2 >0.999) by both the HPLC and UV methods. The method showed good reproducibility and recovery with percent relative standard deviation less than 2%. Moreover, the accuracy and precision obtained with HPLC co-related well with the UV method which implied that UV spectroscopy can be a cheap, reliable and less time consuming alternative for chromatographic analysis. The proposed methods are highly sensitive, precise and accurate and hence successfully applied for determining the assay and in vitro dissolution of a marketed formulation. Keywords: HPLC, UV Spectrophotometry, Haloperidol, Pharmaceutical formulation, Method validation, Quantitative analysi

    Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma

    Full text link
    Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and the modes derived from it (the pure transverse X-mode and Bernstein mode) show no such effect. In general, we note that the thermal anisotropy modifies the parallel propagating modes via the parallel acoustic effect, while it modifies the perpendicular propagating modes via the Larmor-radius effect. In oblique propagation for kinetic Alfven waves, the thermal anisotropy affects the kinetic regime more than it affects the inertial regime. The generalized fast mode exhibits two distinct acoustic effects, one in the direction parallel to the ambient magnetic field and the other in the direction perpendicular to it. In the fast-mode instability, the magneto-sonic wave causes suppression of the firehose instability. We discuss all these propagation characteristics and present graphic illustrations

    Evaluation of 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole as a Novel Anti-Inflammatory Drug Candidate

    Get PDF
    BACKGROUND: 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole (DIC) is a five-membered heterocyclic compound containing a N-O bond. The anti-inflammatory effects of this compound were studied both in vitro and in vivo. PRINCIPAL FINDINGS: DIC effectively decreased TNF-α and IL-6 release from LPS-stimulated macrophages in a dose dependent manner. DIC diminished the levels of COX-2 with subsequent inhibition of PGE(2) production. DIC also compromised HMGB1 translocation from the nucleus to the cytoplasm. Moreover, DIC prevented the nuclear translocation of NF-κB and inhibited the MAPK pathway. In vivo, DIC inhibited migration of neutrophils to the peritoneal cavity of mice. CONCLUSIONS: This study presents the potential utilization of a synthetic compound, as a lead for the development of novel anti-inflammatory drugs
    • …
    corecore