4 research outputs found
Improved Error-Scaling for Adiabatic Quantum State Transfer
We present a technique that dramatically improves the accuracy of adiabatic
state transfer for a broad class of realistic Hamiltonians. For some systems,
the total error scaling can be quadratically reduced at a fixed maximum
transfer rate. These improvements rely only on the judicious choice of the
total evolution time. Our technique is error-robust, and hence applicable to
existing experiments utilizing adiabatic passage. We give two examples as
proofs-of-principle, showing quadratic error reductions for an adiabatic search
algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially
revised to generalize results to cases where several derivatives of the
Hamiltonian are zero on the boundar
The relationship between minimum gap and success probability in adiabatic quantum computing
We explore the relationship between two figures of merit for an adiabatic
quantum computation process: the success probability and the minimum gap
between the ground and first excited states, investigating to
what extent the success probability for an ensemble of problem Hamiltonians can
be fitted by a function of and the computation time . We
study a generic adiabatic algorithm and show that a rich structure exists in
the distribution of and . In the case of two qubits, is
to a good approximation a function of , of the stage in the
evolution at which the minimum occurs and of . This structure persists in
examples of larger systems.Comment: 13 pages, 6 figures. Substantially updated, with further discussion
of the phase diagram and the relation between one- and two-qubit evolution,
as well as a greatly extended list of reference
Quantum hypercomputation based on the dynamical algebra su(1,1)
An adaptation of Kieu's hypercomputational quantum algorithm (KHQA) is
presented. The method that was used was to replace the Weyl-Heisenberg algebra
by other dynamical algebra of low dimension that admits infinite-dimensional
irreducible representations with naturally defined generalized coherent states.
We have selected the Lie algebra , due to that this algebra
posses the necessary characteristics for to realize the hypercomputation and
also due to that such algebra has been identified as the dynamical algebra
associated to many relatively simple quantum systems. In addition to an
algebraic adaptation of KHQA over the algebra , we
presented an adaptations of KHQA over some concrete physical referents: the
infinite square well, the infinite cylindrical well, the perturbed infinite
cylindrical well, the P{\"o}sch-Teller potentials, the Holstein-Primakoff
system, and the Laguerre oscillator. We conclude that it is possible to have
many physical systems within condensed matter and quantum optics on which it is
possible to consider an implementation of KHQA.Comment: 25 pages, 1 figure, conclusions rewritten, typing and language errors
corrected and latex format changed minor changes elsewhere and