1,235 research outputs found

    Integral Relaxation Time of Single-Domain Ferromagnetic Particles

    Full text link
    The integral relaxation time \tau_{int} of thermoactivating noninteracting single-domain ferromagnetic particles is calculated analytically in the geometry with a magnetic field H applied parallel to the easy axis. It is shown that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the Fokker-Planck equation \Lambda_1 at low temperatures, starting from some critical value of H, is the consequence of the depletion of the upper potential well. In these conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier and intrawell relaxation processes.Comment: 8 pages, 3 figure

    Magnetization reversal of ferromagnetic nanodisc placed above a superconductor

    Full text link
    Using numerical simulation we have studied a magnetization distribution and a process of magnetization reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of superconductor on magnetization distribution in the nanomagnet we have used London approximation. We have found that for usual values of London penetration depth the ground state magnetization is mostly unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the interval where vortex is stable enlarges on 100-200 Oe for the particle above the superconductor. Such fields are experimentally observable so there is a possibility of some practical applications of this effect.Comment: 8 pages, 9 figure

    Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field

    Full text link
    The energy of a displaced magnetic vortex in a cylindrical particle made of isotropic ferromagnetic material (magnetic dot) is calculated taking into account the magnetic dipolar and the exchange interactions. Under the simplifying assumption of small dot thickness the closed-form expressions for the dot energy is written in a non-perturbative way as a function of the coordinate of the vortex center. Then, the process of losing the stability of the vortex under the influence of the externally applied magnetic field is considered. The field destabilizing the vortex as well as the field when the vortex energy is equal to the energy of a uniformly magnetized state are calculated and presented as a function of dot geometry. The results (containing no adjustable parameters) are compared to the recent experiment and are in good agreement.Comment: 4 pages, 2 figures, RevTe

    Effective anisotropy of thin nanomagnets: beyond the surface anisotropy approach

    Full text link
    We study the effective anisotropy induced in thin nanomagnets by the nonlocal demagnetization field (dipole-dipole interaction). Assuming a magnetization independent of the thickness coordinate, we reduce the energy to an inhomogeneneous onsite anisotropy. Vortex solutions exist and are ground states for this model. We illustrate our approach for a disk and a square geometry. In particular, we obtain good agreement between spin-lattice simulations with this effective anisotropy and micromagnetic simulations.Comment: ReVTeX, 14 pages, 6 figure

    A Spin-Mechanical Device for Detection and Control of Spin Current by Nanomechanical Torque

    Full text link
    We propose a spin-mechanical device to control and detect spin currents by mechanical torque. Our hybrid nano-electro-mechanical device, which contains a nanowire with a ferromagnetic-nonmagnetic interface, is designed to measure or induce spin polarized currents. Since spin carries angular momentum, a spin flip or spin transfer process involves a change in angular momentum--and hence, a torque--which enables mechanical measurement of spin flips. Conversely, an applied torque can result in spin polarization and spin current.Comment: 6 pages, 2 figure

    Tverberg-type theorems for intersecting by rays

    Full text link
    In this paper we consider some results on intersection between rays and a given family of convex, compact sets. These results are similar to the center point theorem, and Tverberg's theorem on partitions of a point set

    Easy collective polarization switching in ferroelectrics

    Full text link
    The actual mechanism of polarization switching in ferroelectrics remains a puzzle for many decades, since the usually estimated barrier for nucleation and growth is insurmountable ("paradox of the coercive field"). To analyze the mechanisms of the nucleation we consider the exactly solvable case of a ferroelectric film with a "dead" layer at the interface with electrodes. The classical nucleation is easier in this case but still impossible, since the calculated barrier is huge. We have found that the {\em interaction} between the nuclei is, however, long range, hence one has to study an {\em ensemble} of the nuclei. We show that there are the ensembles of small (embryonic) nuclei that grow {\em without the barrier}. We submit that the interaction between nuclei is the key point for solving the paradox.Comment: 5 pages, REVTeX 3.1 with one eps-figure. Corrected discussion of single stripe and cylindrical nuclei, and their interaction. The estimate for equilibrium density of embryonic nuclei is added. To appear in Phys. Rev. Letter

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection

    Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution

    Get PDF
    Our current knowledge about the mechanisms of miRNA silencing is restricted to few lineages such as vertebrates, arthropods, nematodes and land plants. miRNA-mediated silencing in bilaterian animals is dependent on the proteins of the GW182 family. Here, we dissect the function of GW182 protein in the cnidarian Nematostella, separated by 600 million years from other Metazoa. Using cultured human cells, we show that Nematostella GW182 recruits the CCR4-NOT deadenylation complexes via its tryptophan-containing motifs, thereby inhibiting translation and promoting mRNA decay. Further, similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with Argonaute proteins, and functions downstream to repress mRNA. Thus, our work suggests that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria

    Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTi2_2Al20_{20}

    Full text link
    The cubic compound PrTi2_2Al20_{20} is a quadrupolar Kondo lattice system that exhibits quadrupolar ordering due to the non-Kramers Γ3\Gamma_3 ground doublet and has strong hybridization between 4f4f and conduction electrons. Our study using high-purity single crystal reveals that PrTi2_2Al20_{20} exhibits type-II superconductivity at Tc=200T_{\rm c} = 200 mK in the nonmagnetic ferroquadrupolar state. The superconducting critical temperature and field phase diagram suggests moderately enhanced effective mass of m∗/m0∼16m^*/m_0 \sim 16
    • …
    corecore