1,527 research outputs found

    Dynamic Radio-Frequency Transverse Susceptibility in Magnetic Nanoparticle Systems

    Full text link
    A novel resonant method based on a tunnel-diode oscillator (TDO) is used to study the dynamic transverse susceptibility in a Fe nanoparticle system. The magnetic system consists of an aggregate of nanometer-size core (Au)-shell (Fe) structure, synthesized by reverse micelle methods. Static and dynamic magnetization measurements carried out in order to characterize the system reveal a superparamagnetic behavior at high temperature. The field-dependent transverse susceptibility at radio-frequencies (RF), for different temperatures reveals distinct peak structure at characteristics fields (H_k, H_c) which changes with temperature. It is proposed that relaxation processes could explain the influence of the temperature on the field dependence of the transverse susceptibility on the MI.Comment: 3 pages, 2-column, 3 figures, To be published in J. Appl. Phys. 2000 (44th Annual MMM proceedings

    Finite-size versus Surface effects in nanoparticles

    Full text link
    We study the finite-size and surface effects on the thermal and spatial behaviors of the magnetisation of a small magnetic particle. We consider two systems: 1) A box-shaped isotropic particle of simple cubic structure with either periodic or free boundary conditions. This case is treated analytically using the isotropic model of D-component spin vectors in the limit D→∞D\to \infty, including the magnetic field. 2) A more realistic particle (γ\gamma -Fe2_{2}O3_{3}) of ellipsoidal (or spherical) shape with open boundaries. The magnetic state in this particle is described by the anisotropic classical Dirac-Heisenberg model including exchange and dipolar interactions, and bulk and surface anisotropy. This case is dealt with by the classical Monte Carlo technique. It is shown that in both systems finite-size effects yield a positive contribution to the magnetisation while surface effects render a larger and negative contribution, leading to a net decrease of the magnetisation of the small particle with respect to the bulk system. In the system 2) the difference between the two contributions is enhanced by surface anisotropy. The latter also leads to non saturation of the magnetisation at low temperatures, showing that the magnetic order in the core of the particle is perturbed by the magnetic disorder on the surface. This is confirmed by the profile of the magnetisation.Comment: 6 pages of RevTex including 4 Figures, invited paper to 3rd EuroConference on Magnetic Properties of Fine Nanoparticles, Barcelona, October 9

    Scaling relations for magnetic nanoparticles

    Full text link
    A detailed investigation of the scaling relations recently proposed by [J. d'Albuquerque e Castro, D. Altbir, J. C. Retamal, and P. Vargas, Phys. Rev. Lett. 88, 237202 (2002)] to study the magnetic properties of nanoparticles is presented. Analytical expressions for the total energy of three characteristic internal configurations of the particles are obtained, in terms of which the behavior of the magnetic phase diagram for those particles upon scaling of the exchange interaction is discussed. The exponent η\eta in scaling relations is shown to be dependent on the geometry of the vortex core, and results for specific cases are presented.Comment: 6 pages, 4 figure

    Integral Relaxation Time of Single-Domain Ferromagnetic Particles

    Full text link
    The integral relaxation time \tau_{int} of thermoactivating noninteracting single-domain ferromagnetic particles is calculated analytically in the geometry with a magnetic field H applied parallel to the easy axis. It is shown that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the Fokker-Planck equation \Lambda_1 at low temperatures, starting from some critical value of H, is the consequence of the depletion of the upper potential well. In these conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier and intrawell relaxation processes.Comment: 8 pages, 3 figure

    XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    Full text link
    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure

    The Formation and Coarsening of the Concertina Pattern

    Full text link
    The concertina is a magnetization pattern in elongated thin-film elements of a soft material. It is a ubiquitous domain pattern that occurs in the process of magnetization reversal in direction of the long axis of the small element. Van den Berg argued that this pattern grows out of the flux closure domains as the external field is reduced. Based on experimental observations and theory, we argue that in sufficiently elongated thin-film elements, the concertina pattern rather bifurcates from an oscillatory buckling mode. Using a reduced model derived by asymptotic analysis and investigated by numerical simulation, we quantitatively predict the average period of the concertina pattern and qualitatively predict its hysteresis. In particular, we argue that the experimentally observed coarsening of the concertina pattern is due to secondary bifurcations related to an Eckhaus instability. We also link the concertina pattern to the magnetization ripple and discuss the effect of a weak (crystalline or induced) anisotropy

    Magnetic irreversibility and Verwey transition in nano-crystalline bacterial magnetite

    Get PDF
    The magnetic properties of biologically-produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high quality single crystals. The magnetic feature at the Verwey temperature, TVT_{V}, was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which TB<TVT_{B}<T_{V}, where TBT_{B} is the superparamagnetic blocking temperature. For the nanocrystals organized in chains, the effective blocking temperature TB>TVT_{B}>T_{V} and the Verwey transition is sharply defined. No correlation between the particle size and TVT_{V} was found. Furthermore, measurements of M(H,T,time)M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain and this result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation

    Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated temperatures

    Full text link
    We present numerical and analytical results for the swiching times of magnetic nanoparticles with uniaxial anisotropy at elevated temperatures, including the vicinity of T_c. The consideration is based in the Landau-Lifshitz-Bloch equation that includes the relaxation of the magnetization magnitude M. The resulting switching times are shorter than those following from the naive Landau-Lifshitz equation due to (i) additional barrier lowering because of the reduction of M at the barrier and (ii) critical divergence of the damping parameters.Comment: 4 PR pages, 1 figur

    Increased Expression of Tissue Factor and Receptor for Advanced Glycation End Products in Peripheral Blood Mononuclear Cells of Patients With Type 2 Diabetes Mellitus with Vascular Complications

    Get PDF
    The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P = .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P = .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106 PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P = .003). It increased 3-fold in both groups after stimulation (P = .001). TF antigen (pg/106 PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P = .02). Stimulation tripled TF antigen in both groups of patients (P = .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection
    • 

    corecore