5 research outputs found

    Frustrated spin order and stripe fluctuations in FeSe

    Get PDF
    The charge and spin dynamics of the structurally simplest iron-based superconductor, FeSe, may hold the key to understanding the physics of high temperature superconductors in general. Unlike the iron pnictides, FeSe lacks long range magnetic order in spite of a similar structural transition around 90\,K. Here, we report results of Raman scattering experiments as a function of temperature and polarization and simulations based on exact diagonalization of a frustrated spin model. Both experiment and theory find a persistent low energy peak close to 500cm1^{-1} in B1gB_{1g} symmetry, which softens slightly around 100\,K, that we assign to spin excitations. By comparing with results from neutron scattering, this study provides evidence for nearly frustrated stripe order in FeSe.Comment: 12 pages, 12 figure

    Microscopic origin of Cooper pairing in the iron-based superconductor Ba₁₋ₓKₓFe₂As₂

    Get PDF
    Resolving the microscopic pairing mechanism and its experimental identification in unconventional superconductors is among the most vexing problems of contemporary condensed matter physics. We show that Raman spectroscopy provides an avenue towards this aim by probing the structure of the pairing interaction at play in an unconventional superconductor. As we study the spectra of the prototypical Fe-based superconductor Ba1−xKxFe2As2 for 0.22 ≤ x ≤ 0.70 in all symmetry channels, Raman spectroscopy allows us to distill the leading s-wave state. In addition, the spectra collected in the B1g symmetry channel reveal the existence of two collective modes which are indicative of the presence of two competing, yet sub-dominant, pairing tendencies of dx2−y2 symmetry type. A comprehensive functional Renormalization Group and random-phase approximation study on this compound confirms the presence of the two sub-leading channels, and consistently matches the experimental doping dependence of the related modes. The consistency between the experimental observations and the theoretical modeling suggests that spin fluctuations play a significant role in superconducting pairing

    Emerging Photovoltaic (PV) Materials for a Low Carbon Economy

    No full text
    Emerging photovoltaic (PV) technologies have a potential to address the shortcomings of today’s energy market which heavily depends on the use of fossil fuels for electricity generation. We created inventories that offer insights into the environmental impacts and cost of all the materials used in emerging PV technologies, including perovskites, polymers, Cu2ZnSnS4 (CZTS), carbon nanotubes (CNT), and quantum dots. The results show that the CO2 emissions associated with the absorber layers are much less than the CO2 emissions associated with the contact and charge selective layers. The CdS (charge selective layer) and ITO (contact layer) have the highest environmental impacts compared to Al2O3, CuI, CuSCN, MoO3, NiO, poly (3-hexylthiophene-2,5-diyl (P3HT)), phenyl-C61-butyric acid methyl ester (PCBM), poly polystyrene sulfonate (PEDOT:PSS), SnO2, spiro-OMeTAD, and TiO2 (charge selective layers) and Al, Ag, Cu, FTO, Mo, ZnO:In, and ZnO/ZnO:Al (contact layers). The cost assessments show that the organic materials, such as polymer absorbers, CNT, P3HT and spiro-OMeTAD, are the most expensive materials. Inorganic materials would be more preferable to lower the cost of solar cells. All the remaining materials have a potential to be used in the commercial PV market. Finally, we analyzed the cost of PV materials based on their material intensity and CO2 emissions, and concluded that the perovskite absorber will be the most eco-efficient material that has the lowest cost and CO2 emissions
    corecore