14 research outputs found

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Electrical and Electromagnetic Interference (EMI) shielding properties of hexagonal boron nitride nanoparticles reinforced polyvinylidene fluoride nanocomposite films

    No full text
    The hexagonal boron nitride nanoparticles (h-BNNPs) reinforced flexible polyvinylidene fluoride (PVDF) nanocomposite films were prepared via a simple and versatile solution casting method. The morphological, thermal and electrical properties of h-BNNPs/PVDF nanocomposite films were elucidated. The electromagnetic interference (EMI) shielding properties of prepared nanocomposite films were investigated in the X-band frequency regime (8–12 GHz). The EMI shielding effectiveness (SE) was increased from 1 dB for the PVDF film to 11.21 dB for the h-BNNPs/PVDF nanocomposite film containing 25 wt% h-BNNPs loading. The results suggest that h-BNNPs/PVDF nanocomposite films can be used as lightweight and low-cost EMI shielding materials.The author, Dr. M. Basheer Ahamed would like to acknowledge Department of Science and Technology- Science and Engineering Research Board (DST-SERB), Government of India (project No: EMR/2016/006705) for providing financial assistance to carry out this research work.Scopu

    Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting

    No full text
    Integrating efficient energy harvesting materials in to soft, flexible, and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Substantial advances are emerged in fabricating devices which can conform to irregular surfaces in addition to integrating piezoelectric polymer nanocomposites in to mechanical generators and bendable electronics. Here, we present a tri-phasic filler combination of one-dimensional titanium dioxide (TiO2) nanotubes, two-dimensional reduced graphene oxide, and three-dimensional strontium titanate (SrTiO3), introduced in to a semi-crystalline polymer, poly(vinylidene fluoride-co-hexafluoropropylene). Simple mixing method was adopted for the composite fabrication after ensuring a high interaction between the various fillers. The prepared films were tested for their piezoelectric responses and mechanical stretchability. The results showed that the piezoelectric constant has increased due to the change in the filler concentration and reached a value of 7.52 pC/N at 1:2 filler combination. The output voltage obtained for the same filler composition was about http://dx.doi.org/10.5 times that of the voltage generated by the neat polymer. Thus, we propose integration of these materials in fabricating energy conversion devices that can be useful in flexible and wearable electronics. [Figure not available: see fulltext.]Scopu

    Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites

    No full text
    Germanium dioxide (GeO2) nanoparticles reinforced poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) blend nanocomposite films were prepared using solution casting technique. The PVC/PMMA/GeO2 nanocomposite films were characterized by FTIR�Fourier transform infrared spectroscopy, XRD�X-ray diffraction and TGA�thermogravimetric analysis. The morphological and structural characteristics were examined using POM�polarized optical microscopy, SEM�scanning electron microscopy and AFM�atomic force microscopy. The dielectric properties and the electromagnetic interference (EMI) shielding effectiveness of these nanocomposite films were also studied. The EMI shielding properties were studied in the broadband microwave region of X (8�12�GHz) and Ku band (12�18�GHz). From SEM micrographs, the porous network was unfolded that enriches the absorption behaviour. The EMI shielding effectiveness of ? 17.1 dB was observed for PVC/PMMA/GeO2 nanocomposite film with 10 wt % GeO2 loading and the nanocomposite film with 8�wt% of GeO2 loading showed the potential to attenuate electromagnetic waves through absorption up to 75%. Hence, the EMI shielding results demonstrate that the PVC/PMMA/GeO2 nanocomposite films can be used as an absorption dominating shielding materials. � 2018, Springer Science+Business Media, LLC, part of Springer Nature.Scopu

    Green synthesized materials for sensor, actuator, energy storage and energy generation: a review

    No full text
    Green synthesis methods have attracted enormous research interest as replacements for dangerous chemicals due to their abundance and eco-friendliness. The remarkable properties of green synthesized materials include environmental friendliness, high abundance, antimicrobial, antioxidant and biodegradability. The integration of green synthesized materials in electronic devices not only enhances the economic benefit of natural waste resources but also conserves our environment. This review article is dealing with the current research efforts in green synthesized materials trends, challenges and their potential applications in sensors, actuators, energy storage and energy generation.This publication is made possible by NPRP grant 10-0127-170269 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers

    No full text
    In this study, novel three-phase polymer nanocomposites comprising of polyvinylidene fluoride (PVDF), titanium dioxide (TiO2) nanoparticles and graphene oxide (GO) were prepared using colloidal blending. The PVDF/TiO2/GO nanocomposites were characterized by FTIR, XRD, TGA, optical microscopy, SEM, AFM and contact angle analysis. The dielectric properties of these three-phase polymer nanocomposites were investigated using broadband dielectric spectroscopy in the frequency range 50 Hz–20 MHz and temperature in the range 40–150 °C. The FTIR and XRD results infer good interaction between the constituents of nanocomposites. The microscopic studies infer homogeneous dispersion and distribution of TiO2 nanoparticles and GO within the PVDF matrix. A notable improvement in the thermal stability of PVDF was observed by the addition of TiO2 and GO as hybrid fillers. The dielectric performance of PVDF/TiO2/GO nanocomposite films was significantly improved as compared to PVDF/TiO2 (90/10) nanocomposite film. The dielectric constant increases from 18.57 (50 Hz, 150 °C) for PVDF/TiO2 (90/10) nanocomposite film to 165.16 (50 Hz, 150 °C) for PVDF/TiO2/GO nanocomposite film containing 7 wt% TiO2 and 3 wt% GO loading. In addition, the dielectric loss also increases from 1.71 (50 Hz, 150 °C) for PVDF/TiO2 (90/10) nanocomposite film to 3.68 (50 Hz, 150 °C) for PVDF/TiO2/GO nanocomposite film containing 7 wt% TiO2 and 3 wt% GO loading. These intriguing properties of PVDF/TiO2/GO nanocomposites could shed some light on the incorporation of different types of hybrid fillers in a suitable polymer matrix for the development of novel three-phase nanocomposites as intelligent materials for embedded passive applications.One of the authors, Kalim Deshmukh would like to acknowledge the financial support from the management of B. S. Abdur Rahman University, Chennai, 600048, TN, India in terms of Junior Research Fellowship (JRF) to carry out this research work.Scopu

    Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behaviour of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors

    No full text
    Poly(vinyl alcohol)/copper oxide/graphene nanoplatelets (PVA/CuO/Gr-NPls) nanocomposite based chemiresistive alcohol sensors were fabricated using colloidal blending method. The PVA/CuO/Gr-NPls nanocomposite films were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, UV�Vis spectroscopy, thermogravimetric analysis, scanning electron microscopy, atomic force microscopy and the sensing behaviour of PVA/CuO/Gr-NPls nanocomposite films was evaluated for volatile organic compounds (VOCs). The improvement in the thermal, mechanical and VOCs sensing properties of nanocomposite film was observed attributing to the homogeneity of the nanocomposites and strong interfacial interaction between Gr-NPls, CuO and PVA matrix. The sensors were analyzed in the concentration range from 1800 to 4000�ppm. It was observed that PVA/CuO/Gr-NPls nanocomposite film exhibited excellent propanol sensing at a room temperature, typically at an applied voltage of 10�V when compared with other VOCs. Thus, the strong interaction between CuO and Gr-NPls helps in achieving excellent reinforcement effect in a PVA matrix for fabrication of high performance nanocomposite films for VOC�s sensing applications. - 2018, Springer Science+Business Media, LLC, part of Springer Nature.Scopu

    Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications

    No full text
    In this study, biopolymer nanocomposites of cellulose acetate (CA) and Al2O3 nanoparticles (Al2O3 NPs) were successfully obtained using solution blending method. The effect of Al2O3 NPs loading on the microstructure, morphology, thermal and dielectric prop erties of CA/Al2O3 nanocomposites was investigated using FTIR, XRD, TGA, optical microscopy, SEM, AFM and impedance spectroscopy technique. The FTIR results infer good interaction between CA and Al2O3 NPs. The XRD and microscopic studies demonstrated that Al2O3 nanoparticles were homogeneously dispersed in the CA matrix. The TGA results indicate that the onset degradation temperature of CA/Al2O3 nanocomposites is shifted towards higher temperature in the presence of Al2O3 NPs. The contact angle measurements infer reduction in the wettability of CA matrix with increasing Al2O3 NPs loading. On the other hand, the dielectric properties of CA were improved due to an incorporation of Al2O3 NPs. The dielectric constant increases from 8.63 (50 Hz, 30 C) for neat CA matrix to 27.57 (50 Hz, 30 C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 loading. Similarly, the dielectric loss also increases from 0.26 (50 Hz, 30 C) for neat CA matrix to 0.64 (50 Hz, 30 C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 NPs loading. How ever, very low values of tan d (below 1) were observed for all the samples. These results suggest that CA/Al2O3 nanocomposites with improved dielectric properties seem to be a promising candidate for designing electronic devi ces such as embedded passivesOne of the authors, Kalim Deshmukh would like to acknowledge the financial support from the management of B. S. Abdur Rahman University, Chennai - 600048, TN, India in terms of Junior Research Fellowship (JRF) to carry out this research work.Scopu
    corecore