7 research outputs found

    A transition in the spectral statistics of quantum optical model by different electromagnetic fields

    No full text
    In this paper, we have considered the effects of different quantized electromagnetic fields on the spectral statistics of two-level atoms. The Berry-Robnik distribution and the maximum likelihood estimation technique are used to analyze the effect of the mean photon numbers, the two level atoms numbers and also the quantum number of considered states on the fluctuation properties of different systems which are described by different sets of the Dicke Hamiltonian’s parameters. Our results describe the obvious effect of mean photon number on the spectral statistics and show more regular dynamics when this quantity reaches 700. Also, we observed universality in the spectral statistics of considered systems when the number of two level atoms approaches an unrealistic limit (NA ~ 200) and there are some suggestions about the effect of the quantum number of selected levels and the atom-field coupling constant on level statistics

    Size Effects of Gold and Iron Nanoparticles on Radiation Dose Enhancement in Brachytherapy and Teletherapy: A Monte Carlo Study

    No full text
    Introduction In this study, we aimed to calculate dose enhancement factor (DEF) for gold (Au) and iron (Fe) nanoparticles (NPs) in brachytherapy and teletherapy, using Monte Carlo (MC) method. Materials and Methods In this study, a new algorithm was introduced to calculate dose enhancement by AuNPs and FeNPs for Iridium-192 (Ir-192) brachytherapy and Cobalt-60 (Co-60) teletherapy sources, using the MC method. In this algorithm, the semi-random distribution of NPs was used instead of the regular distribution. Diameters were assumed to be 15, 30, and 100 nm in brachytherapy and 15 and 30 nm in teletherapy. Monte Carlo MCNP4C code was used for simulations, and NP density values were 0.107 mg/ml and 0.112 mg/ml in brachytherapy and teletherapy, respectively. Results AuNPs significantly enhanced the radiation dose in brachytherapy (approximately 60%), and 100 nm diameter NPs showed the most uniform dose distribution. AuNPs had an insignificant effect on teletherapy radiation field, with a dose enhancement ratio of 3% (about the calculation uncertainty) or less. In addition, FeNPs had an insignificant effect on both brachytherapy and teletherapy radiation fields. FeNPs dose enhancement was 3% in brachytherapy and 6% (about the calculation uncertainty) or less in teletherapy. Conclusion It can be concluded that AuNPs can significantly increase the absorbed dose in brachytherapy; however, FeNPs do not have a noticeable effect on the absorbed dos

    Monte Carlo simulation of the RBE of I-131 radiation using DNA damage as biomarker

    No full text
    In general, a weighting factor of one is applied for low linear energy transfer radiations. However, several studies indicate that relative biological effectiveness (RBE) of low energy photons and electrons is greater than one. The aim of this current study was calculating the RBE of I-131 radiation relative to Co-60 gamma photons in 100 μm spheroid cells using Monte Carlo (MC) simulations. These calculations were compared to experimentally measured results. MCNPX2.6 was used to simulate the I-131 and Co-60 irradiation setups and calculate the secondary electron spectra at energies higher than 1 keV with varying oxygen concentrations. The electron spectra at energies lower than 1 keV were obtained by extrapolation (down to 10 eV). The calculated electron spectra were input into the MCDS micro-dosimetric Monte Carlo code to calculate the DSB induction and related RBE. The calculated RBE of I-131 radiation relative to Co-60 photons, as the reference radiation recommended by the International Commission on Radiation Protection (ICRP), was 1.06, 1.03 and 1.02 for oxygen concentrations of 0, 5 and 100%, respectively. Results of MC simulations indicate the RBE of I-131 is greater than one. This finding, despite a 10% discrepancy with the findings of the previous in vitro study of one of the authors of this paper, reemphasizes that I-131 radiation induces more severe biological damage than current ICRP recommendations

    A comprehensive procedure for characterizing arbitrary azimuthally symmetric photon beams

    No full text
    A new Monte Carlo (MC) source model (SM) has been developed for azimuthally symmetric photon beams. The MC simulation tallied phase space file (PSF) is divided into two categories depending on the relationship of the particle track line to the beam central axis: multiple point source (MPS) and spatial mesh based surface source (SMBSS). To validate this SM, MCNPX2.6 was used to generate two PSFs for a 6 MV photon beam from a Varian 2100C/D linear accelerator. PDDs and profiles were calculated using the SM and original PSF for different field sizes from 5 × 5 to 40 × 40 cm2. Agreement was within 2% of the maximum dose at 100 cm SSD and 2.5% of the maximum dose at 200 cm SSD for beam profiles at depths of 3.5 cm and 15 cm with respect to the original PSF. Differences between the source model and the PSF in the out-of-field regions were less than 0.5% of the profile maximum value at 100 cm SSD. Differences between measured and calculated points were less than 2% of the maximum dose or 2 mm distance to agreement (DTA) at 100 cm SSD. This SM is unique in that it accounts for a higher level of energy dependence on the particle's direction and it is independent from accelerator components, unlike other published SMs. The model can be applied to any arbitrary azimuthally symmetric beam and has source biasing capabilities that significantly increase the simulation speed up to 3300 for certain field sizes

    A transition in the spectral statistics of quantum optical model by different electromagnetic fields

    No full text
    In this paper, we have considered the effects of different quantized electromagnetic fields on the spectral statistics of two-level atoms. The Berry-Robnik distribution and the maximum likelihood estimation technique are used to analyze the effect of the mean photon numbers, the two level atoms numbers and also the quantum number of considered states on the fluctuation properties of different systems which are described by different sets of the Dicke Hamiltonian’s parameters. Our results describe the obvious effect of mean photon number on the spectral statistics and show more regular dynamics when this quantity reaches 700. Also, we observed universality in the spectral statistics of considered systems when the number of two level atoms approaches an unrealistic limit (NA ~ 200) and there are some suggestions about the effect of the quantum number of selected levels and the atom-field coupling constant on level statistics
    corecore