1 research outputs found

    Analisis Pengaruh Jenis Dan Tebal Spray Applied Materials Fireproofing Terhadap Ketahanan Api Balok Baja

    Full text link
    Protection against fire is important to maintain the strength of the structure. Fireproofing can be used as an anticipation to reduce the spread of the fire. Evaluation the effect of fire on structural elements is generally performed by a numerical approach. Analysis of simple beam IWF 150x75x5x7 with 3,5 span length using varied fireproofing such as CAFCO 300, Carboline Type 5 MD and Typo WR-AFD was conducted with Abaqus CAE 6.11-1. Nonlinear material properties of steel based on Eurocode 3 while thermal properties of fireproofing are constant. Thickness variation of fireproofing are 10 and 20 mm. Pressure load was carried on the top flange of steel beam. ASTM E-119 used as a thermal load by conduction on 3 sides (left, right and bottom) with duration of 2 hours. The results showed that type and thickness variation of the fireproofing has a significant effect on the fire resistance of steel beams. The highest temperatures occur when steel coated by Typo WR-AFP and the lower temperatures occur when steel coated by CAFCO 300. Maximum deflection of steel beam occurred when steel coated by Typo WR-AFD. Steel beam with Typo WR-AFD experiencing a critical deflection with the fastest time of 4.80 minutes at 10 mm thick and 9.10 min at 20 mm thick. Steel beam with 10 mm thick of fireproofing achieve yield stress when the time 14.03, 8.86 and 5, 12 minutes for fireproofing CAFCO 300, Carboline Type 5 MD and Typo-AFD WR. Steel beam with 20 mm thick of fireproofing experiencing yield stress only on Typo WR-AFD at 10.22 minutes
    corecore