4 research outputs found

    Mechanisms of nonalcoholic fatty liver disease and implications for surgery

    No full text
    Background!#!Nonalcoholic fatty liver disease (NAFLD) has become the most common form of chronic liver disease in both adults and children worldwide. Understanding the pathogenic mechanisms behind NAFLD provides the basis for identifying risk factors, such as metabolic syndrome, pancreatoduodenectomy, and host genetics, that lead to the onset and progression of the disease. The progression from steatosis to more severe forms, such as steatohepatitis, fibrosis, and cirrhosis, leads to an increased number of liver and non-liver complications.!##!Purpose!#!NAFLD-associated end-stage liver disease (ESLD) and hepatocellular carcinoma (HCC) often require surgery as the only curative treatment. In particular, the presence of NAFLD together with the coexisting metabolic comorbidities that usually occur in these patients requires careful preoperative diagnosis and peri-/postoperative management. Bariatric surgery, liver resection, and liver transplantation (LT) have shown favorable results for weight loss, HCC, and ESLD in patients with NAFLD. The LT demand and the increasing spread of NAFLD in the donor pool reinforce the already existing lack of donor organs.!##!Conclusion!#!In this review, we will discuss the diverse mechanisms underlying NAFLD, its implications for surgery, and the challenges for patient management

    Dual role of neutrophils in modulating liver injury and fibrosis during development and resolution of diet-induced murine steatohepatitis.

    No full text
    Inflammatory changes in the liver represent a key feature of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD). Innate immune activation including hepatic neutrophilic infiltration acts as an important inflammatory trigger as well as a potential mediator of inflammation resolution. In this study, we dissected the effects of neutrophil depletion via anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies administration during ongoing high fat-fructose-cholesterol (FFC) diet-induced murine NASH and during inflammation resolution by switching into a low-fat control diet. During NASH progression, protective effects were shown as HSC activation, cell infiltration and activation of pro-inflammatory macrophages were ameliorated. Furthermore, these changes were contrasted with the effects observed when neutrophil depletion was performed during the resolution phase. Impaired resolving mechanisms, such as a failure to balance the pro and anti-inflammatory cytokines ratio, deficient macrophage phenotypic switch into a pro-restorative profile, and defective repair and remodeling processes were observed when neutrophils were depleted in this scenario. This study described phase-dependent contrasting roles of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis associated with diet-induced NASH in mice. These findings have important translational implications at the time of designing NASH therapeutic strategies

    Cell-specific Deletion of NLRP3 Inflammasome Identifies Myeloid Cells as Key Drivers of Liver Inflammation and Fibrosis in Murine Steatohepatitis.

    No full text
    Background & aimsNonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. The NLRP3 inflammasome, a platform for caspase-1 activation and release of interleukin 1β, is increasingly recognized in the induction of inflammation and liver fibrosis during NAFLD. However, the cell-specific contribution of NLRP3 inflammasome activation in NAFLD remains unknown.MethodsTo investigate the role of NLRP3 inflammasome activation in hepatocytes, hepatic stellate cells (HSCs) and myeloid cells, a conditional Nlrp3 knock-out mouse was generated and bred to cell-specific Cre mice. Both acute and chronic liver injury models were used: lipopolysaccharide/adenosine-triphosphate to induce in vivo NLRP3 activation, choline-deficient, L-amino acid-defined high-fat diet, and Western-type diet to induce fibrotic nonalcoholic steatohepatitis (NASH). In vitro co-culture studies were performed to dissect the crosstalk between myeloid cells and HSCs.ResultsMyeloid-specific deletion of Nlrp3 blunted the systemic and hepatic increase in interleukin 1β induced by lipopolysaccharide/adenosine-triphosphate injection. In the choline-deficient, L-amino acid-defined high-fat diet model of fibrotic NASH, myeloid-specific Nlrp3 knock-out but not hepatocyte- or HSC-specific knock-out mice showed significant reduction in inflammation independent of steatosis development. Moreover, myeloid-specific Nlrp3 knock-out mice showed ameliorated liver fibrosis and decreased HSC activation. These results were validated in the Western-type diet model. In vitro co-cultured studies with human cell lines demonstrated that HSC can be activated by inflammasome stimulation in monocytes, and this effect was significantly reduced if NLRP3 was downregulated in monocytes.ConclusionsThe study provides new insights in the cell-specific role of NLRP3 in liver inflammation and fibrosis. NLRP3 inflammasome activation in myeloid cells was identified as crucial for the progression of NAFLD to fibrotic NASH. These results may have implications for the development of cell-specific strategies for modulation of NLRP3 activation for treatment of fibrotic NASH
    corecore