52 research outputs found

    Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism

    Get PDF
    International audienceSex chromosomes can display successive steps of recombination suppression known as " evolutionary strata, " which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombi-nation suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9–2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymor-phism due to balancing selection on sexes and mating types. evolutionary strata | chromosomal rearrangements | fungi | genomic degeneration | mating-type chromosome

    The making of the oral microbiome in Agta hunter–gatherers

    Get PDF
    Ecological and genetic factors have influenced the composition of the human microbiome during our evolutionary history. We analysed the oral microbiota of the Agta, a hunter–gatherer population where some members have adopted an agricultural diet. We show that age is the strongest factor modulating the microbiome, probably through immunosenescence since we identified an increase in the number of species classified as pathogens with age. We also characterised biological and cultural processes generating sexual dimorphism in the oral microbiome. A small subset of oral bacteria is influenced by the host genome, linking host collagen genes to bacterial biofilm formation. Our data also suggest that shifting from a fish/meat diet to a rice-rich diet transforms their microbiome, mirroring the Neolithic transition. All of these factors have implications in the epidemiology of oral diseases. Thus, the human oral microbiome is multifactorial and shaped by various ecological and social factors that modify the oral environment

    The evolution of the vertebrate beta globin gene family

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Chapter 3 Genome Evolution in Plant Pathogenic and Symbiotic Fungi

    No full text
    International audienc

    DOI: 10.1007/s00239-004-2612-0 Gene Conversion and Functional Divergence in the b-Globin Gene Family

    No full text
    Abstract. Different models of gene family evolution have been proposed to explain the mechanism whereby gene copies created by gene duplications are maintained and diverge in function. Ohta proposed a model which predicts a burst of nonsynonymous substitutions following gene duplication and the preservation of duplicates through positive selection. An alternative model, the duplication–degeneration– complementation (DDC) model, does not explicitly require the action of positive Darwinian selection for the maintenance of duplicated gene copies, although purifying selection is assumed to continue to act on both copies. A potential outcome of the DDC model is heterogeneity in purifying selection among the gene copies, due to partitioning of subfunctions which complement each other. By using the dN/dS (x) rate ratio to measure selection pressure, we can distinguish between these two very different evolutionary scenarios. In this study we investigated these scenarios in the b-globin family of genes, a textbook example of evolution by gene duplication. We assembled a comprehensive dataset of 72 vertebrate bglobin sequences. The estimated phylogeny suggested multiple gene duplication and gene conversion events. By using different programs to detect recombination, we confirmed several cases of gene conversion and detected two new cases. We tested evolutionary scenarios derived from Ohta’s model and the DDC model by examining selective pressures along lineages in a phylogeny of b-globin genes in eutherian mam

    Massive gene swamping among cheese-making Penicillium fungi

    Get PDF
    International audienceHorizontal gene transfers (HGT), i.e., the transmission of genetic material between species not directly attributable to meiotic gene exchange, have long been acknowledged as a major driver of prokaryotic evolution and is increasingly recognized as an important source of adaptation in eukaryotes. In fungi in particular , many convincing examples of HGT have been reported to confer selective advantages on the recipient fungal host, either promoting fungal pathogenicity on plants or increasing their toxicity by the acquisition of secondary metabolic clusters, resulting in adaptation to new niches and in some cases eventually even in speciation. These horizontal gene transfers involve single genes, complete metabolic pathways or even entire chromosomes. A recent study has uncovered multiple recent horizontal transfers of a 575 kb ge-nomic island in cheese Penicillium fungi, representing ca. 2% of the Penicillium roqueforti's genome, that may confer selective advantage in the competing cheese environment where bacteria and fungi occur. Novel phylogenomic methods are being developed, revealing massive HGT among fungi. Altogether, these recent studies indicate that HGT is a crucial mechanism of rapid adaptation, even among eukaryotes. A well-documented example of pathogenicity acquisition in fungi involves the recent transfer of the toxin-coding gene ToxA, from Stagonospora nodorum, a fungus pathogen of wheat, to Pyrenophora tritici-repentis, a distant fungal species having thereby acquired the ability to infect wheat. Pyrenophora has also acquired numerous virulence factor
    • …
    corecore