3,835 research outputs found

    Nonlocality effects on spin-one pairing patterns in two-flavor color superconducting quark matter and compact stars applications

    Full text link
    We study the influence of nonlocality in the interaction on two spin one pairing patterns of two-flavor quark matter: the anisotropic blue color paring besides the usual two color superconducting matter (2SCb), in which red and green colors are paired, and the color spin locking phase (CSL). The effect of nonlocality on the gaps is rather large and the pairings exhibit a strong dependence on the form factor of the interaction, especially in the low density region. The application of these small spin-one condensates for compact stars is analyzed: the early onset of quark matter in the nonlocal models may help to stabilize hybrid star configurations. While the anisotropic blue quark pairing does not survive a big asymmetry in flavor space as imposed by the charge neutrality condition, the CSL phase as a flavor independent pairing can be realized as neutral matter in compact star cores. However, smooth form factors and the missmatch between the flavor chemical potential in neutral matter make the effective gaps of the order of magnitude 10\simeq 10 keV, and a more systematic analysis is needed to decide whether such small gaps could be consistent with the cooling phenomenology.Comment: 18 pages, 7 figures, corrected version with revised parameterizatio

    Homogeneity problem for basis expansion of functional data with applications to resistive memories

    Full text link
    The homogeneity problem for testing if more than two different samples come from the same population is considered for the case of functional data. The methodological results are motivated by the study of homogeneity of electronic devices fabricated by different materials and active layer thicknesses. In the case of normality distribution of the stochastic processes associated with each sample, this problem is known as Functional ANOVA problem and is reduced to test the equality of the mean group functions (FANOVA). The problem is that the current/voltage curves associated with Resistive Random Access Memories (RRAM) are not generated by a Gaussian process so that a different approach is necessary for testing homogeneity. To solve this problem two different parametric and nonparametric approaches based on basis expansion of the sample curves are proposed. The first consists of testing multivariate homogeneity tests on a vector of basis coefficients of the sample curves. The second is based on dimension reduction by using functional principal component analysis of the sample curves (FPCA) and testing multivariate homogeneity on a vector of principal components scores. Different approximation numerical techniques are employed to adapt the experimental data for the statistical study. An extensive simulation study is developed for analyzing the performance of both approaches in the parametric and non-parametric cases. Finally, the proposed methodologies are applied on three samples of experimental reset curves measured in three different RRAM technologies

    Asymptotic iteration method for eigenvalue problems

    Full text link
    An asymptotic interation method for solving second-order homogeneous linear differential equations of the form y'' = lambda(x) y' + s(x) y is introduced, where lambda(x) \neq 0 and s(x) are C-infinity functions. Applications to Schroedinger type problems, including some with highly singular potentials, are presented.Comment: 14 page

    Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the 6^{6}He + 209^{209}Bi System at Near-Coulomb-Barrier Energies

    Full text link
    Based on an approach recently proposed by us, simultaneous χ2\chi^{2}-analyses are performed for elastic scattering, direct reaction (DR) and fusion cross sections data for the 6^{6}He+209^{209}Bi system at near-Coulomb-barrier energies to determine the parameters of the polarization potential consisting of DR and fusion parts. We show that the data are well reproduced by the resultant potential, which also satisfies the proper dispersion relation. A discussion is given of the nature of the threshold anomaly seen in the potential

    Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories

    Full text link
    Functional principal component analysis based on Karhunen Loeve expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the whole process. The aim of this work is to consider a family of statistical distributions that could be accurately adjusted to a previous transformation. Then, a new class of distributions, the linear-phase-type, is introduced to model the principal components. This class is studied in detail in order to prove, through the KL expansion, that certain linear transformations of the process at each time point are phase-type distributed. This way, the one-dimensional distributions of the process are in the same linear-phase-type class. Finally, an application to model the reset process associated with resistive memories is developed and explained

    Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories

    Full text link
    [EN] Functional principal component analysis (FPCA) based on Karhunen-Loeve (K-L) expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the whole process. The aim of this work is to consider a family of statistical distributions that could be accurately adjusted to a previous transformation. Then, a new class of distributions, the linear-phase-type, is introduced to model the principal components. This class is studied in detail in order to prove, through the K-L expansion, that certain linear transformations of the process at each time point are phase-type distributed. This way, the one-dimensional distributions of the process are in the same linear-phase-type class. Finally, an application to model the reset process associated with resistive memories is developed and explained. (C) 2020 Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS).We would like to thank F. Campabadal and M.B. Gonzalez from the IMB-CNM (CSIC) in Barcelona for fabricating and providing the experimental measurements of the devices employed here. We acknowledge the support of the Spanish Ministry of Science, Innovation and Universities under projects TEC2017-84321-C4-3-R, MTM201788708-P, IJCI-2017-34038 (also supported by the FEDER, Spain program) and the PhD grant, Spain (FPU18/01779) awarded to Christian Acal. This work has made use of the Spanish ICTS Network MICRONANOFABSRuiz-Castro, JE.; Acal, C.; Aguilera, AM.; Aguilera-Morillo, MC.; Roldán, JB. (2021). Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories. Mathematics and Computers in Simulation. 186:71-79. https://doi.org/10.1016/j.matcom.2020.07.006717918

    Spin-one color superconductivity in compact stars?- an analysis within NJL-type models

    Full text link
    We present results of a microscopic calculation using NJL-type model of possible spin-one pairings in two flavor quark matter for applications in compact star phenomenology. We focus on the color-spin locking phase (CSL) in which all quarks pair in a symmetric way, in which color and spin states are locked. The CSL condensate is particularly interesting for compact star applications since it is flavor symmetric and could easily satisfy charge neutrality. Moreover, the fact that in this phase all quarks are gapped might help to suppress the direct Urca process, consistent with cooling models. The order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but their also small critical temperatures (T_c ~800 keV) could be relevant in the late stages neutron star evolution, when the temperature falls below this value and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference Proceedings of "Isolated Neutron Stars: from the Interior to the Surface", London, 24-28. April 200

    Evaluating 5-nitrothiazoles as trypanocidal agents

    Get PDF
    OA Monitor ExerciseOA Monitor ExerciseThe growth inhibitory properties of a 5-nitrothiazole series was evaluated against Trypanosoma brucei. A subset of related compounds displayed the greatest potency towards the parasite while exhibiting little cytotoxic effect on mammalian cells, with this anti-parasitic activity being dependent on expression of a type I nitroreductase by the trypanosome. We conclude that the 5-nitrothiazole class of nitroheterocycle may represent new leads in the treatment of human African trypanosomiasis.BAV acknowledges financial support by FONDECYT Postdoctorado 313036
    corecore