2,773 research outputs found

    Neutral color-spin locking phase in neutron stars

    Get PDF
    We present results for the spin-1 color-spin locking phase (CSL) using a NJL-type model in two flavor quark matter for compact stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied. We find small energy gaps ~1 MeV, which make the CSL matter composition and the EoS not very different from the normal quark matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores, when asymmetric flavor pairing is suppressed, could be covered by the CSL phase.Comment: 3 pages, 4 figures, contribution talk to the IVth International Conference on Quarks and Nuclear Physics(QNP06), Madrid, Spain, 5-10 Jun 200

    Nonlocality effects on spin-one pairing patterns in two-flavor color superconducting quark matter and compact stars applications

    Full text link
    We study the influence of nonlocality in the interaction on two spin one pairing patterns of two-flavor quark matter: the anisotropic blue color paring besides the usual two color superconducting matter (2SCb), in which red and green colors are paired, and the color spin locking phase (CSL). The effect of nonlocality on the gaps is rather large and the pairings exhibit a strong dependence on the form factor of the interaction, especially in the low density region. The application of these small spin-one condensates for compact stars is analyzed: the early onset of quark matter in the nonlocal models may help to stabilize hybrid star configurations. While the anisotropic blue quark pairing does not survive a big asymmetry in flavor space as imposed by the charge neutrality condition, the CSL phase as a flavor independent pairing can be realized as neutral matter in compact star cores. However, smooth form factors and the missmatch between the flavor chemical potential in neutral matter make the effective gaps of the order of magnitude ≃10\simeq 10 keV, and a more systematic analysis is needed to decide whether such small gaps could be consistent with the cooling phenomenology.Comment: 18 pages, 7 figures, corrected version with revised parameterizatio

    Nonlocality effects on Color Spin Locking condensates

    Get PDF
    We consider the color spin locking (CSL) phase of two-flavor quark matter at zero temperature for nonlocal instantaneous, separable interactions. We employ a Lorentzian-type form factor allowing a parametric interpolation between the sharp (Nambu-Jona-Lasinio (NJL) model) and very smooth (e.g. Gaussian) cut-off models for systematic studies of the influence on the CSL condensate the deviation from the NJL model entails. This smoothing of the NJL model form factor shows advantageous features for the phenomenology of compact stars: (i) a lowering of the critical chemical potential for the onset of the chiral phase transition as a prerequisite for stability of hybrid stars with extended quark matter cores and (ii) a reduction of the smallest pairing gap to the order of 100 keV, being in the range of values interesting for phenomenological studies of hybrid star cooling evolution.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Phys.Rev.

    Effects of quark matter and color superconductivity in compact stars

    Full text link
    The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the form factors of the interaction on the phase diagram of quark matter under the condition of beta-equilibrium and charge neutrality. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of Delta M c^2 ~ 10^{53} erg. We study the consequences of antineutrino trapping in hot quark matter for quark star configurations with possible diquark condensation and discuss the claim that this energy could serve as an engine for explosive phenomena. A "phase diagram" for rotating compact stars (angular velocity-baryon mass plane) is suggested as a heuristic tool for obtaining constraints on the equation of state of QCD at high densities. It has a critical line dividing hadronic from quark core stars which is correlated with a local maximum of the moment of inertia and can thus be subject to experimental verification by observation of the rotational behavior of accreting compact stars.Comment: 14 pages, 12 figures, Talk given at 2nd International Workshop on Hadron Physics: Effective Theories of Low-Energy QCD, Coimbra, Portugal, 25-29 Sep 200

    Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution

    Full text link
    We study the consequences of antineutrino trapping in hot quark matter for quark star configurations with possible diquark condensation. Due to the conditions of charge neutrality and beta-equilibrium the flavor asymmetry increases with the number density of trapped antineutrinos such that above a critical value of the antineutrino chemical potential of 30 MeV diquark condensation is inhibited. When the quark star cools a two-phase structure occurs: a superconducting quark matter core surrounded by a shell of normal quark matter. Below the critical temperature of about 1 MeV, the antineutrino mean free path becomes larger than the thickness of the normal quark matter shell so that they get untrapped within a sudden process. By comparing the masses of configurations with the same baryon number we estimate that the release of energy due to the antineutrino untrapping transition can be in the range of 10^{51} to 10^{52} erg.Comment: 7 pages, 5 figures, uses aa.cls (included), numerical results updated, reference added, minor text modification

    Spin-one color superconductivity in compact stars?- an analysis within NJL-type models

    Full text link
    We present results of a microscopic calculation using NJL-type model of possible spin-one pairings in two flavor quark matter for applications in compact star phenomenology. We focus on the color-spin locking phase (CSL) in which all quarks pair in a symmetric way, in which color and spin states are locked. The CSL condensate is particularly interesting for compact star applications since it is flavor symmetric and could easily satisfy charge neutrality. Moreover, the fact that in this phase all quarks are gapped might help to suppress the direct Urca process, consistent with cooling models. The order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but their also small critical temperatures (T_c ~800 keV) could be relevant in the late stages neutron star evolution, when the temperature falls below this value and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference Proceedings of "Isolated Neutron Stars: from the Interior to the Surface", London, 24-28. April 200

    A synthetic population of Wolf-Rayet stars in the LMC based on detailed single and binary star evolution models

    Full text link
    Without doubt, mass transfer in close binary systems contributes to the populations of Wolf-Rayet (WR) stars in the Milky Way and the Magellanic Clouds. However, the binary formation channel is so far not well explored. We want to remedy this by exploring large grids of detailed binary and single star evolution models computed with the publicly available MESA code, for a metallicity appropriate for the Large Magellanic Cloud (LMC). The binary models are calculated through Roche-lobe overflow and mass transfer, until the initially more massive star exhausts helium in its core. We distinguish models of WR and helium stars based on the estimated stellar wind optical depth. We use these models to build a synthetic WR population, assuming constant star formation. Our models can reproduce the WR population of the LMC to significant detail, including the number and luminosity functions of the main WR subtypes. We find that for binary fractions of 100% (50%), all LMC WR stars below 106 L⊙10^6\,L_{\odot} (105.7 L⊙10^{5.7}\,L_{\odot}) are stripped binary mass donors. We also identify several insightful mismatches. With a single star fraction of 50\%, our models produce too many yellow supergiants, calling either for a larger initial binary fraction, or for enhanced mass-loss near the Humphreys-Davidson limit. Our models predict more long-period WR binaries than observed, arguably due to an observational bias towards short periods. Our models also underpredict the shortest-period WR binaries, which may have implications for understanding the progenitors of double black hole mergers. The fraction of binary produced WR stars may be larger than often assumed, and outline the risk to mis-calibrate stellar physics when only single star models are used to reproduce the observed WR stars.Comment: 15 pages + 13 pages appendix, 14 figures, 2 table

    A basis for variational calculations in d dimensions

    Full text link
    In this paper we derive expressions for matrix elements (\phi_i,H\phi_j) for the Hamiltonian H=-\Delta+\sum_q a(q)r^q in d > 1 dimensions. The basis functions in each angular momentum subspace are of the form phi_i(r)=r^{i+1+(t-d)/2}e^{-r^p/2}, i >= 0, p > 0, t > 0. The matrix elements are given in terms of the Gamma function for all d. The significance of the parameters t and p and scale s are discussed. Applications to a variety of potentials are presented, including potentials with singular repulsive terms of the form b/r^a, a,b > 0, perturbed Coulomb potentials -D/r + B r + Ar^2, and potentials with weak repulsive terms, such as -g r^2 + r^4, g > 0.Comment: 22 page

    The SuperMACHO Microlensing Survey

    Full text link
    We present the first results from our next-generation microlensing survey, the SuperMACHO project. We are using the CTIO 4m Blanco telescope and the MOSAIC imager to carry out a search for microlensing toward the Large Magellanic Cloud (LMC). We plan to ascertain the nature of the population responsible for the excess microlensing rate seen by the MACHO project. Our observing strategy is optimized to measure the differential microlensing rate across the face of the LMC. We find this derivative to be relatively insensitive to the details of the LMC's internal structure but a strong discriminant between Galactic halo and LMC self lensing. In December 2003 we completed our third year of survey operations. 2003 also marked the first year of real-time microlensing alerts and photometric and spectroscopic followup. We have extracted several dozen microlensing candidates, and we present some preliminary light curves and related information. Similar to the MACHO project, we find SNe behind the LMC to be a significant contaminant - this background has not been completely removed from our current single-color candidate sample. Our follow-up strategy is optimized to discriminate between SNe and true microlensing.Comment: To appear in Proceedings of IAU Symposium 225: Impact of Gravitational Lensing on Cosmology, 6 page
    • 

    corecore