5 research outputs found

    Cell Type Mediated Resistance of Vesicular Stomatitis Virus and Sendai Virus to Ribavirin

    Get PDF
    Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro

    Lower ribavirin biodisponibility in patients with HIV-HCV coinfection in comparison with HCV monoinfected patients.

    Get PDF
    International audienceBACKGROUND: In HIV infected patients, the impact of ribavirin (RBV) pharmacology on sustained virologic response (SVR) to hepatitis C virus (HCV) treatment has not been fully investigated. The objective of this study was to compare the early RBV plasma exposure between a population of HIV-HCV coinfected patients and an HCV monoinfected group. METHODS: Early RBV plasma exposure (expressed as Area Under the Curve (AUC) from 0 to 4 h) after a 600 mg first dose of RBV was measured in a population of HIV-HCV coinfected patients in comparison with an HCV monoinfected group. Peripheral blood samples were collected before the 600 mg RBV first dose (T0) to ensure no detectable baseline plasma RBV, and then 30 mn, 1, 2 and 4 hours after RBV intake (T0.5, T1, T2 and T4). RESULTS: Eighty-six patients with chronic hepatitis C entered the study among whom 23 (27%) were HIV-HCV coinfected. Coinfected patients had a significantly lower RBV-AUC(0-4h) (median: 1469 μg*h/L [range 936-3677]) compared with monoinfected patients (2030 μg*h/L [851-7700]; p = 0.018). This RBV under exposure in coinfected patients persisted after normalization of AUC to RBV dose per kilogram of body weight (182 μg*h/L [110-425] versus 271 μg*h/L [82-1091], p = 0.001). CONCLUSIONS: These results suggest that lower early bioavailability of RBV could be one of the reasons for lower SVR in HIV-HCV coinfected patients treated with pegylated interferon/RBV combination therapy. RBV plasma underexposure seems to be associated with the immunological status of the patients with lower AUC(0-4h) values observed in the more immunosuppressed coinfected patients

    Hepatitis C virus infection in patients with HIV-1: epidemiology, natural history and management

    No full text
    corecore