797 research outputs found

    Impact of right-handed interactions on the propagation of Dirac and Majorana neutrinos in matter

    Full text link
    Dirac and Majorana neutrinos can be distinguished in relativistic neutrino oscillations if new right-handed interactions exist, due to their different propagation in matter. We review how these new interactions affect neutrino oscillation experiments and discuss the size of this eventually observable effect for different oscillation channels, baselines and neutrino energies.Comment: 26 pages, 5 figure

    Leptophobic U(1)'s and the R_b - R_c Crisis

    Get PDF
    In this paper, we investigate the possibility of explaining both the R_b excess and the R_c deficit reported by the LEP experiments through Z-Z' mixing effects. We have constructed a set of models consistent with a restrictive set of principles: unification of the Standard Model (SM) gauge couplings, vector- like additional matter, and couplings which are both generation-independent and leptophobic. These models are anomaly-free, perturbative up to the GUT scale, and contain realistic mass spectra. Out of this class of models, we find three explicit realizations which fit the LEP data to a far better extent than the unmodified SM or MSSM and satisfy all other phenomenological constraints which we have investigated. One realization, the \eta-model coming from E_6, is particularly attractive, arising naturally from geometrical compactifications of heterotic string theory. This conclusion depends crucially on the inclusion of a U(1) kinetic mixing term, whose value is correctly predicted by renormalization group running in the E_6 model given one discrete choice of spectra.Comment: LaTeX, 26 pages, 5 embedded EPSF figures. Version to be published in Phys. Rev.

    Model-Independent Searches for New Quarks at the LHC

    Get PDF
    New vector-like quarks can have sizable couplings to first generation quarks without conflicting with current experimental constraints. The coupling with valence quarks and unique kinematics make single production the optimal discovery process. We perform a model-independent analysis of the discovery reach at the Large Hadron Collider for new vector-like quarks considering single production and subsequent decays via electroweak interactions. An early LHC run with 7 TeV center of mass energy and 1 fb-1 of integrated luminosity can probe heavy quark masses up to 1 TeV and can be competitive with the Tevatron reach of 10 fb-1. The LHC with 14 TeV center of mass energy and 100 fb-1 of integrated luminosity can probe heavy quark masses up to 3.7 TeV for order one couplings.Comment: 37 pages, 11 figures, 7 table

    Nambu monopoles in lattice Electroweak theory

    Full text link
    We considered the lattice electroweak theory at realistic values of α\alpha and θW\theta_W and for large values of the Higgs mass. We investigated numerically the properties of topological objects that are identified with quantum Nambu monopoles. We have found that the action density near the Nambu monopole worldlines exceeds the density averaged over the lattice in the physical region of the phase diagram. Moreover, their percolation probability is found to be an order parameter for the transition between the symmetric and the broken phases. Therefore, these monopoles indeed appear as real physical objects. However, we have found that their density on the lattice increases with increasing ultraviolet cutoff. Thus we conclude, that the conventional lattice electroweak theory is not able to predict the density of Nambu monopoles. This means that the description of Nambu monopole physics based on the lattice Weinberg - Salam model with finite ultraviolet cutoff is incomplete. We expect that the correct description may be obtained only within the lattice theory that involves the description of TeV - scale physics.Comment: LATE

    Neutrino physics at large colliders

    Get PDF
    Large colliders are not sensitive to light neutrino masses and character, but they can produce new heavy neutrinos, allowing also for the determination of their Dirac or Majorana nature. We review the discovery limits at the next generation of large colliders.Comment: LaTeX 32 pages. This review summarises and extends work presented at several conferences. To appear in the proceedings of CORFU2005. References adde
    corecore