1,647 research outputs found

    Reconstruction of the Extended Gauge Structure from ZZ' Observables at Future Colliders

    Full text link
    The discovery of a new neutral gauge boson ZZ' with a mass in the TeV region would allow for determination of gauge couplings of the ZZ' to ordinary quarks and leptons in a model independent way. We show that these couplings in turn would allow us to determine the nature of the extended gauge structure. As a prime example we study the E6E_6 group. In this case two discrete constraints on experimentally determined couplings have to be satisfied. If so, the couplings would then uniquely determine the two parameters, tanβ\tan \beta and δ\delta, which fully specify the nature of the ZZ' within E6E_6. If the ZZ' is part of the E6E_6 gauge structure, then for MZ=1M_{Z'}=1 TeV tanβ\tan \beta and δ\delta could be determined to around 10%10\% at the future colliders. The NLC provides a unique determination of the two constraints as well as of tanβ\tan \beta and δ\delta, though with slightly larger error bars than at the LHC. On the other hand, since the LHC primarily determines three out of four normalized couplings, it provides weaker constraints for the underlying gauge structure.Comment: 14 pages LaTeX using RevTeX and psfig.sty. TeX source and 3 PS figures, tarred, compressed and uuencoded; also available via anonymous ftp to ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-636-T

    Constraining differential renormalization in abelian gauge theories

    Full text link
    We present a procedure of differential renormalization at the one loop level which avoids introducing unnecessary renormalization constants and automatically preserves abelian gauge invariance. The amplitudes are expressed in terms of a basis of singular functions. The local terms appearing in the renormalization of these functions are determined by requiring consistency with the propagator equation. Previous results in abelian theories, with and without supersymmetry, are discussed in this context.Comment: 13 pages, LaTeX. Some equations corrected and a reference added. Complete ps paper also available at http://www-ftae.ugr.es/papiros.html or ftp://ftae3.ugr.es/pub/rmt/ugft73.p

    Looking for signals beyond the neutrino Standard Model

    Get PDF
    Any new neutrino physics at the TeV scale must include a suppression mechanism to keep its contribution to light neutrino masses small enough. We review some seesaw model examples with weakly broken lepton number, and comment on the expected effects at large colliders and in neutrino oscillations.Comment: LaTeX 10 pages, 9 PS figures. Contribution to the Proceedings of the XXXI International School of Theoretical Physics "Matter To The Deepest" Ustron, Poland, September 5-11, 2007. Typos correcte

    Comparison of the effect of locking vs standard screws on the mechanical properties of bone-plate constructs in a comminuted diaphyseal fracture model

    Get PDF
    The purpose of this study was to compare the mechanical properties of bone-plate constructs with locking compression plates (LCP) used either with standard screws or with locking screws on an experimental model of comminuted fracture

    Quark mixings and flavor changing interactions with singlet quarks

    Get PDF
    Aspects of the quark mixings and flavor changing interactions are investigated in electroweak models with singlet quarks. The effects on the ordinary quark mixing are determined in terms of the quark masses and the parameters describing the mixing between the ordinary quarks q and the singlet quarks Q (q-Q mixing). Some salient features arise in the flavor changing interactions through the q-Q mixing. The unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix within the ordinary quark sector is violated, and the flavor changing neutral currents (FCNC's) appear both in the gauge and scalar couplings. The flavor changing interactions are calculated appropriately in terms of the q-Q mixing parameters and the quark masses, which really exhibit specific flavor structures. It is found that there are reasonable ranges of the model parameters to reproduce the ordinary quark mass hierarchy and the actual CKM structure even in the presence of q-Q mixing. Some phenomenological effects of the singlet quarks are also discussed. In particular, the scalar FCNC's may be more important in some cases, if the singlet quarks as well as the extra scalar particles from the singlet Higgs fields have masses \sim 100 GeV -- 1 TeV.Comment: 32 pages, 7 figures, added reference

    Model-Independent Searches for New Quarks at the LHC

    Get PDF
    New vector-like quarks can have sizable couplings to first generation quarks without conflicting with current experimental constraints. The coupling with valence quarks and unique kinematics make single production the optimal discovery process. We perform a model-independent analysis of the discovery reach at the Large Hadron Collider for new vector-like quarks considering single production and subsequent decays via electroweak interactions. An early LHC run with 7 TeV center of mass energy and 1 fb-1 of integrated luminosity can probe heavy quark masses up to 1 TeV and can be competitive with the Tevatron reach of 10 fb-1. The LHC with 14 TeV center of mass energy and 100 fb-1 of integrated luminosity can probe heavy quark masses up to 3.7 TeV for order one couplings.Comment: 37 pages, 11 figures, 7 table
    corecore