71 research outputs found

    Elastic properties of graphyne-based nanotubes

    Get PDF
    Graphyne nanotubes (GNTs) are nanostructures obtained from rolled up graphyne sheets, in the same way carbon nanotubes (CNTs) are obtained from graphene ones. Graphynes are 2D carbon-allotropes composed of atoms in sp and sp2 hybridized states. Similarly to conventional CNTs, GNTs can present different chiralities and electronic properties. Because of the acetylenic groups (triple bonds), GNTs exhibit large sidewall pores that influence their mechanical properties. In this work, we studied the mechanical response of GNTs under tensile stress using fully atomistic molecular dynamics simulations and density functional theory (DFT) calculations. Our results show that GNTs mechanical failure (fracture) occurs at larger strain values in comparison to corresponding CNTs, but paradoxically with smaller ultimate strength and Young's modulus values. This is a consequence of the combined effects of the existence of triple bonds and increased porosity/flexibility due to the presence of acetylenic groups

    II Brazilian Consensus on the use of human immunoglobulin in patients with primary immunodeficiencies

    Full text link

    Chaotic signature in the motion of coupled carbon nanotube oscillators

    No full text
    The motion of coupled oscillators based on multiwalled carbon nanotubes is studied using rigid-body dynamics simulations. The results show the existence of chaotic and regular behaviours for a given total energy, indicating the manifestation of chaos in nanoscaled mechanical systems based on carbon nanotube oscillators. Different regular motions are observed for different total energies, and they can be obtained by appropriately choosing the initial conditions. This possibility can allow the construction of multi-functional nano-devices based on multiwalled carbon nanotube oscillators.16458358

    Metabolic engineering of Ashbya gossypii for deciphering the de novo biosynthesis of γ-lactones

    No full text
    Background Lactones are highly valuable cyclic esters of hydroxy fatty acids that find application as pure fragrances or as building blocks of speciality chemicals. While chemical synthesis often leads to undesired racemic mixtures, microbial production allows obtaining optically pure lactones. The production of a specific lactone by biotransformation depends on the supply of the corresponding hydroxy fatty acid, which has economic and industrial value similar to γ-lactones. Hence, the identification and exploration of microorganisms with the rare natural ability for de novo biosynthesis of lactones will contribute to the long-term sustainability of microbial production. In this study, the innate ability of Ashbya gossypii for de novo production of γ-lactones from glucose was evaluated and improved. Results Characterization of the volatile organic compounds produced by nine strains of this industrial filamentous fungus in glucose-based medium revealed the noteworthy presence of seven chemically different γ-lactones. To decipher and understand the de novo biosynthesis of γ-lactones from glucose, we developed metabolic engineering strategies focused on the fatty acid biosynthesis and the β-oxidation pathways. Overexpression of AgDES589, encoding a desaturase for the conversion of oleic acid (C18:1) into linoleic acid (C18:2), and deletion of AgELO624, which encodes an elongase that catalyses the formation of C20:0 and C22:0 fatty acids, greatly increased the production of γ-lactones (up to 6.4-fold; (7.6 ± 0.8) × 103 µg/gCell Dry Weight). Further substitution of AgPOX1, encoding the exclusive acyl-CoA oxidase in A. gossypii, by a codon-optimized POX2 gene from Yarrowia lipolytica, which encodes a specific long chain acyl-CoA oxidase, fine-tuned the biosynthesis of γ-decalactone to a relative production of more than 99%. Conclusions This study demonstrates the potential of A. gossypii as a model and future platform for de novo biosynthesis of γ-lactones. By means of metabolic engineering, key enzymatic steps involved in their production were elucidated. Moreover, the combinatorial metabolic engineering strategies developed resulted in improved de novo biosynthesis of γ-decalactone. In sum, these proof-of-concept data revealed yet unknown metabolic and genetic determinants important for the future exploration of the de novo production of γ-lactones as an alternative to biotransformation processes.This study was supported by: the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2019 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) (Post-Doc grant to T. Q. Aguiar and Ph.D. grant to E. Coelho), Ph.D. Grant PD/BD/113812/2015 to R. Silva (Doctoral Program in Applied and Environmental Microbiology), and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte; the Spanish Ministerio de Economía y Competitividad (BIO2014-56930-P and BIO2017-88435-R) and Junta de Castilla y León (SA016P17) to A. Jiménez and J.L. Revuelta.info:eu-repo/semantics/publishedVersio
    • …
    corecore