1,931 research outputs found

    Ultrasonic triggering of giant magnetocaloric effect in MnAs thin films

    Full text link
    Mechanical control of magnetic properties in magnetostrictive thin films offers the unexplored opportunity to employ surface wave acoustics in such a way that acoustic triggers dynamic magnetic effects. The strain-induced modulation of the magnetic anisotropy can play the role of a high frequency varying effective magnetic field leading to ultrasonic tuning of electronic and magnetic properties of nanostructured materials, eventually integrated in semiconductor technology. Here, we report about the opportunity to employ surface acoustic waves to trigger magnetocaloric effect in MnAs(100nm)/GaAs(001) thin films. During the MnAs magnetostructural phase transition, in an interval range around room temperature (0{\deg}C - 60{\deg}C), ultrasonic waves (170 MHz) are strongly attenuated by the phase coexistence (up to 150 dB/cm). We show that the giant magnetocaloric effect of MnAs is responsible of the observed phenomenon. By a simple anelastic model we describe the temperature and the external magnetic field dependence of such a huge ultrasound attenuation. Strain-manipulation of the magnetocaloric effect could be a further interesting route for dynamic and static caloritronics and spintronics applications in semiconductor technology

    On the nature of an ejection event in the jet of 3C111

    Full text link
    We present a possible scenario for the ejection of a superluminal component in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI observations at 15 GHz discovered the presence of two jet features on scales smaller than one parsec. The first component evolves downstream, whereas the second one fades out after 1 parsec. We propose the injection of a perturbation of dense material followed by a decrease in the injection rate of material in the jet as a plausible explanation. This scenario is supported by 1D relativistic hydrodynamics and emission simulations. The perturbation is modeled as an increase in the jet density, without modifying the original Lorentz factor in the initial conditions. We show that an increase of the Lorentz factor in the material of the perturbation fails to reproduce the observed evolution of this flare. We are able to estimate the lifetime of the ejection event in 3C111 to be 36\pm7 days.Comment: Accepted for publication in Astronomy & Astrophysics Letter

    Instability of attractors in auto–associative networks with bio–inspired fast synaptic noise

    Get PDF
    We studied auto–associative networks in which synapses are noisy on a time scale much shorter that the one for the neuron dynamics. In our model a presynaptic noise causes postsynaptic depression as recently ob- served in neurobiological systems. This results in a nonequilibrium condi- tion in which the network sensitivity to an external stimulus is enhanced. In particular, the fixed points are qualitatively modified, and the system may easily scape from the attractors. As a result, in addition to pattern recognition, the model is useful for class identification and categorization.MCyT and FEDER (project No. BFM2001- 2841 and Ram´on y Cajal contract

    Acoustic full-waveform inversion in an elastic world

    Get PDF
    Full-waveform inversion (FWI) is a technique used to obtain high-quality velocity models of the subsurface. Despite the elastic nature of the earth, the anisotropic acoustic wave equation is typically used to model wave propagation in FWI. In part, this simplification is essential for being efficient when inverting large 3D data sets, but it has the adverse effect of reducing the accuracy and resolution of the recovered P-wave velocity models, as well as a loss in potential to constrain other physical properties, such as the S-wave velocity given that amplitude information in the observed data set is not fully used. Here, we first apply conventional acoustic FWI to acoustic and elastic data generated using the same velocity model to investigate the effect of neglecting the elastic component in field data and we find that it leads to a loss in resolution and accuracy in the recovered velocity model. Then, we develop a method to mitigate elastic effects in acoustic FWI using matching filters that transform elastic data into acoustic data and find that it is applicable to marine and land data sets. Tests show that our approach is successful: The imprint of elastic effects on the recovered P-wave models is mitigated, leading to better-resolved models than those obtained after conventional acoustic FWI. Our method requires a guess of VP/VS and is marginally more computationally demanding than acoustic FWI, but much less so than elastic FWI. Read More: https://library.seg.org/doi/10.1190/geo2017-0063.

    Systematic Review On Bullying Situations And Intervention Programs In Early Childhood Education

    Get PDF
    Background: Bullying is a traumatic event that is observed from the early stages of the educational system. Ensuring an adequate socioemotional development through the implementation of activities or intervention programs based on the work of Emotional Intelligence in the Early Childhood Education stage where empathy, assertiveness, emotional intelligence, social skills, values... are worked on, with the aim of preventing/eradicating situations of violence in educational environments, is essential to put an end to this problem. Goal: To find out whether there is evidence of bullying at the early childhood education (ECE) stage and to investigate whether bullying prevention work is carried out at this educational stage. Method: A systematic review, following the PRISMA 2020 Declaration, was carried out in the Web of Science (WoS) and Scopus (SJR) databases from January to March 2023. The search terms used were: "Children", "Health Education" and "Bullying". Only articles in Spanish and English published from 2013 to 2023 were selected, in which bullying in the ECE stage is analyzed. The last filter applied was related with research areas of Psychology and Education. The sample is composed of a total of 4 articles, most of them published abroad. Findings: According to the studies reviewed, there is little concern about bullying at the ECE stage, and there is little concern about the implementation of prevention programs for this proble

    Addressing viscous effects in acoustic full-waveform inversion

    Get PDF
    In conventional full-waveform inversion (FWI), viscous effects are typically neglected, and this is likely to adversely affect the recovery of P-wave velocity. We have developed a strategy to mitigate viscous effects based on the use of matching filters with the aim of improving the performance of acoustic FWI. The approach requires an approximate estimate of the intrinsic attenuation model, and it is one to three times more expensive than conventional acoustic FWI. First, we perform 2D synthetic tests to study the impact of viscoacoustic effects on the recorded wavefield and analyze how that affects the recovered velocity models after acoustic FWI. Then, we apply the current method on the generated data and determine that it mitigates viscous effects successfully even in the presence of noise. We find that having an approximate estimate for intrinsic attenuation, even when these effects are strong, leads to improvements in resolution and a more accurate recovery of the P-wave velocity. Then, we implement and develop our method on a 2D field data set using Gabor transforms to obtain an approximate intrinsic attenuation model and inversion frequencies of up to 24 Hz. The analysis of the results indicates that there is an improvement in terms of resolution and continuity of the layers on the recovered P-wave velocity model, leading to an improved flattening of gathers and a closer match of the inverted velocity model with the migrated seismic data
    • …
    corecore