55 research outputs found

    MEMOSys: Bioinformatics platform for genome-scale metabolic models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in genomic sequencing have enabled the use of genome sequencing in standard biological and biotechnological research projects. The challenge is how to integrate the large amount of data in order to gain novel biological insights. One way to leverage sequence data is to use genome-scale metabolic models. We have therefore designed and implemented a bioinformatics platform which supports the development of such metabolic models.</p> <p>Results</p> <p>MEMOSys (MEtabolic MOdel research and development System) is a versatile platform for the management, storage, and development of genome-scale metabolic models. It supports the development of new models by providing a built-in version control system which offers access to the complete developmental history. Moreover, the integrated web board, the authorization system, and the definition of user roles allow collaborations across departments and institutions. Research on existing models is facilitated by a search system, references to external databases, and a feature-rich comparison mechanism. MEMOSys provides customizable data exchange mechanisms using the SBML format to enable analysis in external tools. The web application is based on the Java EE framework and offers an intuitive user interface. It currently contains six annotated microbial metabolic models.</p> <p>Conclusions</p> <p>We have developed a web-based system designed to provide researchers a novel application facilitating the management and development of metabolic models. The system is freely available at <url>http://www.icbi.at/MEMOSys</url>.</p

    Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pichia stipitis </it>and <it>Pichia pastoris </it>have long been investigated due to their native abilities to metabolize every sugar from lignocellulose and to modulate methanol consumption, respectively. The latter has been driving the production of several recombinant proteins. As a result, significant advances in their biochemical knowledge, as well as in genetic engineering and fermentation methods have been generated. The release of their genome sequences has allowed systems level research.</p> <p>Results</p> <p>In this work, genome-scale metabolic models (GEMs) of <it>P. stipitis </it>(iSS884) and <it>P. pastoris </it>(iLC915) were reconstructed. iSS884 includes 1332 reactions, 922 metabolites, and 4 compartments. iLC915 contains 1423 reactions, 899 metabolites, and 7 compartments. Compared with the previous GEMs of <it>P. pastoris</it>, PpaMBEL1254 and iPP668, iLC915 contains more genes and metabolic functions, as well as improved predictive capabilities. Simulations of physiological responses for the growth of both yeasts on selected carbon sources using iSS884 and iLC915 closely reproduced the experimental data. Additionally, the iSS884 model was used to predict ethanol production from xylose at different oxygen uptake rates. Simulations with iLC915 closely reproduced the effect of oxygen uptake rate on physiological states of <it>P. pastoris </it>expressing a recombinant protein. The potential of <it>P. stipitis </it>for the conversion of xylose and glucose into ethanol using reactors in series, and of <it>P. pastoris </it>to produce recombinant proteins using mixtures of methanol and glycerol or sorbitol are also discussed.</p> <p>Conclusions</p> <p>In conclusion the first GEM of <it>P. stipitis </it>(iSS884) was reconstructed and validated. The expanded version of the <it>P. pastoris </it>GEM, iLC915, is more complete and has improved capabilities over the existing models. Both GEMs are useful frameworks to explore the versatility of these yeasts and to capitalize on their biotechnological potentials.</p

    RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on <i>Streptomyces coelicolor</i>

    Get PDF
    RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM)

    Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes

    Get PDF
    Genome-scale metabolic models are available for an increasing number of organisms and can be used to define the region of feasible metabolic flux distributions. In this work we use as constraints a small set of experimental metabolic fluxes, which reduces the region of feasible metabolic states. Once the region of feasible flux distributions has been defined, a set of possible flux distributions is obtained by random sampling and the averages and standard deviations for each of the metabolic fluxes in the genome-scale model are calculated. These values allow estimation of the significance of change for each reaction rate between different conditions and comparison of it with the significance of change in gene transcription for the corresponding enzymes. The comparison of flux change and gene expression allows identification of enzymes showing a significant correlation between flux change and expression change (transcriptional regulation) as well as reactions whose flux change is likely to be driven only by changes in the metabolite concentrations (metabolic regulation). The changes due to growth on four different carbon sources and as a consequence of five gene deletions were analyzed for Saccharomyces cerevisiae. The enzymes with transcriptional regulation showed enrichment in certain transcription factors. This has not been previously reported. The information provided by the presented method could guide the discovery of new metabolic engineering strategies or the identification of drug targets for treatment of metabolic diseases

    Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT

    Get PDF
    Development of high throughput analytical methods has given physicians the potential access to extensive and patient-specific data sets, such as gene sequences, gene expression profiles or metabolite footprints. This opens for a new approach in health care, which is both personalized and based on system-level analysis. Genome-scale metabolic networks provide a mechanistic description of the relationships between different genes, which is valuable for the analysis and interpretation of large experimental data-sets. Here we describe the generation of genome-scale active metabolic networks for 69 different cell types and 16 cancer types using the INIT (Integrative Network Inference for Tissues) algorithm. The INIT algorithm uses cell type specific information about protein abundances contained in the Human Proteome Atlas as the main source of evidence. The generated models constitute the first step towards establishing a Human Metabolic Atlas, which will be a comprehensive description (accessible online) of the metabolism of different human cell types, and will allow for tissue-level and organism-level simulations in order to achieve a better understanding of complex diseases. A comparative analysis between the active metabolic networks of cancer types and healthy cell types allowed for identification of cancer-specific metabolic features that constitute generic potential drug targets for cancer treatment

    Main reactions showing transcriptional up (red) or down (green) regulation associated with the glucose-ethanol shift.

    No full text
    <p>The underlined metabolite pools are those that are expected to increase (red) or decrease (green) according to the observed metabolic regulation.</p

    Top scoring enzymes for transcriptional, post-transcriptional and metabolic regulation for changes in carbon source.

    No full text
    <p>Top scoring enzymes for transcriptional, post-transcriptional and metabolic regulation for changes in carbon source.</p

    This figure illustrates the different steps of our method.

    No full text
    <p>Two kinds of data are extracted from fermentations, gene expression data and production and consumption rates of different metabolites. The gene expression data are transformed into significance scores and p-values for the expression change of the metabolic genes. The measured fluxes are used to constrain the solution spaces corresponding to different conditions. A sampling among the allowed solutions gives averages and standard deviations for each reaction rate in the metabolic network. These values can be obtained to obtain significance scores and p-values for the changes in reaction rates. The p-values for changes in expression and in reaction rates can be combined to obtain the probabilities for a correlated change between both values (transcriptional regulation), changes in rate not correlated to transcriptional changes (metabolic regulation) and changes in transcription that are not correlated to changes in rate (which we refer to as posttranscriptional regulation).</p

    Illustration of the regulatory mechanisms of cellular metabolism.

    No full text
    <p>The fluxes can be regulated at the level of mRNA transcription, by the concentrations of the metabolites or by intermediate steps such as translation or activation of the enzymes.</p
    corecore