6 research outputs found

    Bio-inspired knee joint: Trends in the hardware systems development

    Get PDF
    The knee joint is a complex structure that plays a significant role in the human lower limb for locomotion activities in daily living. However, we are still not quite there yet where we can replicate the functions of the knee bones and the attached ligaments to a significant degree of success. This paper presents the current trend in the development of knee joints based on bio-inspiration concepts and modern bio-inspired knee joints in the research field of prostheses, power-assist suits and mobile robots. The paper also reviews the existing literature to describe major turning points during the development of hardware and control systems associated with bio-inspired knee joints. The anatomy and biomechanics of the knee joint are initially presented. Then the latest bio-inspired knee joints developed within the last 10 years are briefly reviewed based on bone structure, muscle and ligament structure and control strategies. A leg exoskeleton is then introduced for enhancing the functionality of the human lower limb that lacks muscle power. The design consideration, novelty of the design and the working principle of the proposed knee joint are summarized. Furthermore, the simulation results and experimental results are also presented and analyzed. Finally, the paper concludes with design difficulties, design considerations and future directions on bio-inspired knee joint design. The aim of this paper is to be a starting point for researchers keen on understanding the developments throughout the years in the field of bio-inspired knee joints

    A robotic test rig for performance assessment of prosthetic joints

    Get PDF
    Movement within the human body is made possible by joints connecting two or more elements of the musculoskeletal system. Losing one or more of these connections can seriously limit mobility, which in turn can lead to depression and other mental issues. This is particularly pertinent due to a dramatic increase in the number of lower limb amputations resulting from trauma and diseases such as diabetes. The ideal prostheses should re-establish the functions and movement of the missing body part of the patient. As a result, the prosthetic solution has to be tested stringently to ensure effective and reliable usage. This paper elaborates on the development, features, and suitability of a testing rig that can evaluate the performance of prosthetic and robotic joints via cyclic dynamic loading on their complex movements. To establish the rig’s validity, the knee joint was chosen as it provides both compound support and movement, making it one of the major joints within the human body, and an excellent subject to ensure the quality of the prosthesis. Within the rig system, a motorised lead-screw simulates the actuation provided by the hamstring-quadricep antagonist muscle pair and the flexion experienced by the joint. Loads and position are monitored by a load cell and proximity sensors respectively, ensuring the dynamics conform with the geometric model and gait analysis. Background: Robotics, Prosthetics, Mechatronics, Assisted Living. Methods: Gait Analysis, Computer Aided Design, Geometry Models. Conclusion: Modular Device, Streamlining Rehabilitation

    Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments

    Get PDF
    Nuclear facilities have a regulatory requirement to measure radiation levels within Post Operational Cleanout (POCO) around nuclear facilities each year, resulting in a trend towards robotic deployments to gain an improved understanding during nuclear decommissioning phases. The UK Nuclear Decommissioning Authority supports the view that human-in-the-loop robotic deployments are a solution to improve procedures and reduce risks within radiation haracterisation of nuclear sites. We present a novel implementation of a Cyber-Physical System (CPS) deployed in an analogue nuclear environment, comprised of a multi-robot team coordinated by a human-in-the-loop operator through a digital twin interface. The development of the CPS created efficient partnerships across systems including robots, digital systems and human. This was presented as a multi-staged mission within an inspection scenario for the heterogeneous Symbiotic Multi-Robot Fleet (SMuRF). Symbiotic interactions were achieved across the SMuRF where robots utilised automated collaborative governance to work together where a single robot would face challenges in full characterisation of radiation. Key contributions include the demonstration of symbiotic autonomy and query-based learning of an autonomous mission supporting scalable autonomy and autonomy as a service. The coordination of the CPS was a success and displayed further challenges and improvements related to future multi-robot fleets

    Multimodal immersive digital twin platform for cyber–physical robot fleets in nuclear environments

    No full text
    The nuclear energy sector can benefit from mobile robots for remote inspection and handling, reducing human exposure to radiation. Advances in cyber–physical systems have improved robotic platforms in this sector through digital twin (DT) technology. DTs enhance situational awareness for robot operators, crucial for safety in the nuclear energy sector, and their value is anticipated to increase with the growing complexity of cyber–physical systems. The primary motivation of this work is to rapidly develop and evaluate a robot fleet interface that accounts for these benefits in the context of nuclear environments. Here, we introduce a multimodal immersive DT platform for cyber–physical robot fleets based on the ROS-Unity 3D framework. The system design enables fleet monitoring and management by integrating building information models, mission parameters, robot sensor data, and multimodal user interaction through traditional and virtual reality interfaces. A modified heuristic evaluation approach, which accounts for the positive and negative aspects of the interface, was introduced to accelerate the iterative design process of our DT platform. Robot operators from leading nuclear research institutions (Sellafield Ltd. and the Japan Atomic Energy Agency) performed a simulated robot inspection mission while providing valuable insights into the design elements of the cyber–physical system. The three usability themes that emerged and inspired our design recommendations for future developers include increasing the interface's flexibility, considering each robot's individuality, and adapting the platform to expand sensor visualization capabilities
    corecore