10,699 research outputs found
Study of dominating parameters of high speed solar plasma streams in relation to cosmic ray and geomagnetic storms
The high speed solar wind streams observed near Earth are generally associated with the solar features, such as solar flares and coronal holes. Past studies of these streams from the two sources have revealed distinctly different effects on cosmic ray intensity, whereas the effect is similar for geomagnetic disturbances. Moreover, the effect of the magnitude of the high speed streams (V) and its rate of increase (dv/dt) has also been a subject of investigation to understand their relative contribution in producing geomagnetic disturbances. From the analysis of some of the fast streams presented here, it is difficult to predict, which one of the two (V, dv/dt) is more effective in producing geo-magnetic disturbances. Further, in most of the cases, no substantial decrease in cosmic ray intensity is observed
Management and Performance of APPLE Battery in High Temperature Environment
India's first experimental communication satellite, APPLE, carried a 12 AH Ni-Cd battery for supplying power during eclipse. Failure to deploy one of the two solar panels resulted in the battery operating in a high temperature environment, around 40 C. This also resulted in the battery being used in diurnal cycles rather than just half yearly eclipse seasons. The management and performance of the battery during its life of two years are described. An attempt to identify the probable degradation mechanisms is also made
Cumulative effect of Forbush decreases in the heliospheric modulation during the present solar cycle
A monthly Forbush decrease index (Fd-I) is generated and it is compared with the observed long term chnges in the cosmic ray intensity near earth at energies greater than or equal to 1 Gev over 1976-83. Significant correlation is observed between the two except for 1978. Such an effect is also seen in the correlation plot between the solar flare index (SFI) and Fd-I
A direct approach to the design of linear multivariable systems
Design of multivariable systems is considered and design procedures are formulated in the light of the most recent work on model matching. The word model matching is used exclusively to mean matching the input-output behavior of two systems. The term is used in the frequency domain to indicate the comparison of two transfer matrices containing transfer functions as elements. Design methods where non-interaction is not used as a criteria were studied. Two design methods are considered. The first method of design is based solely upon the specification of generalized error coefficients for each individual transfer function of the overall system transfer matrix. The second design method is called the pole fixing method because all the system poles are fixed at preassigned positions. The zeros of terms either above or below the diagonal are partially fixed via steady state error coefficients. The advantages and disadvantages of each method are discussed and an example is worked to demonstrate their uses. The special cases of triangular decoupling and minimum constraints are discussed
Non-rotating and rotating neutron stars in the extended field theoretical model
We study the properties of non-rotating and rotating neutron stars for a new
set of equations of state (EOSs) with different high density behaviour obtained
using the extended field theoretical model. The high density behaviour for
these EOSs are varied by varying the meson self-coupling and
hyperon-meson couplings in such a way that the quality of fit to the bulk
nuclear observables, nuclear matter incompressibility coefficient and
hyperon-nucleon potential depths remain practically unaffected. We find that
the largest value for maximum mass for the non-rotating neutron star is
. The radius for the neutron star with canonical mass is km provided only those EOSs are considered for which maximum mass is
larger than as it is the lower bound on the maximum mass measured
so far. Our results for the very recently discovered fastest rotating neutron
star indicate that this star is supra massive with mass and
circumferential equatorial radius km.Comment: 28 pages, 12 figures. Phys. Rev. C (in press
Correlations in the properties of static and rapidly rotating compact stars
Correlations in the properties of the static compact stars (CSs) and the ones
rotating with the highest observed frequency of 1122Hz are studied using a
large set of equations of state (EOSs). These EOSs span various approaches and
their chemical composition vary from the nucleons to hyperons and quarks in
-equilibrium. It is found that the properties of static CS, like, the
maximum gravitational mass and radius corresponding to t he canonical mass and supramassive or
non-supramassive nature of the CS rotating at 1122 Hz are strongly correlated.
In particular, only those EOSs yield the CS rotating at 1122Hz to be
non-supramassive for which \left (\frac{M_{\rm max}^{\rm stat}}{M_\odot}\right
)^{1/2} \left (\frac{10{\rm km}}{R_{1.4}^{\rm stat}})^{3/2} is greater than
unity. Suitable parametric form which can be used to split the plane into the regions of different
supramassive nature of the CS rotating at 1122Hz is presented. Currently
measured maximum gravitational mass 1.76 of PSR J0437-4715 suggests
that the CS rotating at 1122Hz can be non-supramassive provided km.Comment: 13 pages, 4 figures, Appearing in Phys. Rev.
Temperature induced shell effects in deformed nuclei
The thermal evolution of the shell correction energy is investigated for
deformed nuclei using Strutinsky prescription in a self-consistent relativistic
mean-field framework. For temperature independent single-particle states
corresponding to either spherical or deformed nuclear shapes, the shell
correction energy steadily washes out with temperature. However,
for states pertaining to the self-consistent thermally evolving shapes of
deformed nuclei, the dual role played by the single-particle occupancies in
diluting the fluctuation effects from the single-particle spectra and in
driving the system towards a smaller deformation is crucial in determining
at moderate temperatures. In rare earth nuclei, it is found that
builds up strongly around the shape transition temperature; for
lighter deformed nuclei like and , this is relatively less
prominent.Comment: 6 pages revtex file + 4 ps files for figures, Phys. Rev. C (in press
Quantum temporal correlations and entanglement via adiabatic control of vector solitons
It is shown that optical pulses with a mean position accuracy beyond the
standard quantum limit can be produced by adiabatically expanding an optical
vector soliton followed by classical dispersion management. The proposed scheme
is also capable of entangling positions of optical pulses and can potentially
be used for general continuous-variable quantum information processing.Comment: 5 pages, 1 figure, v2: accepted by Physical Review Letters, v3: minor
editing and shortening, v4: included the submitted erratu
A Cost-based Optimizer for Gradient Descent Optimization
As the use of machine learning (ML) permeates into diverse application
domains, there is an urgent need to support a declarative framework for ML.
Ideally, a user will specify an ML task in a high-level and easy-to-use
language and the framework will invoke the appropriate algorithms and system
configurations to execute it. An important observation towards designing such a
framework is that many ML tasks can be expressed as mathematical optimization
problems, which take a specific form. Furthermore, these optimization problems
can be efficiently solved using variations of the gradient descent (GD)
algorithm. Thus, to decouple a user specification of an ML task from its
execution, a key component is a GD optimizer. We propose a cost-based GD
optimizer that selects the best GD plan for a given ML task. To build our
optimizer, we introduce a set of abstract operators for expressing GD
algorithms and propose a novel approach to estimate the number of iterations a
GD algorithm requires to converge. Extensive experiments on real and synthetic
datasets show that our optimizer not only chooses the best GD plan but also
allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201
- …