7 research outputs found

    Elevated Plasmodium sporozoite infection and multiple insecticide resistance in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon

    Get PDF
    Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a village located 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F1 adult progeny. Bioassays were performed to assess resistance profile to insecticides. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having a similar sporozoite rate. Both species exhibited high levels of resistance to pyrethroids (<40% mortality). An. gambiae s.s. was also resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively. Furthermore, the high pyrethroid/DDT resistances in An. gambiae s.s. corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the high Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas

    Prevalence of non- Plasmodium falciparum species in southern districts of Brazzaville in The Republic of the Congo

    Get PDF
    Background: Although Plasmodium falciparum infection is largely documented and this parasite is the main target for malaria eradication, other Plasmodium species persist, and these require more attention in Africa. Information on the epidemiological situation of non-P. falciparum species infections is scarce in many countries, including in the Democratic Republic of the Congo (hereafter Republic of the Congo) where malaria is highly endemic. The aim of this study was to determine the prevalence and distribution of non-P. falciparum species infections in the region south of Brazzaville. Methods: A cross-sectional survey was conducted in volunteers living in rural and urban settings during the dry and rainy seasons in 2021. Socio-demographic and clinical parameters were recorded. Plasmodium infection in blood samples was detected by microscopic analysis and nested PCR (sub-microscopic analysis). Results: Of the 773 participants enrolled in the study, 93.7% were from the rural area, of whom 97% were afebrile. The prevalence of microscopic and sub-microscopic Plasmodium spp. infection was 31.2% and 63.7%, respectively. Microscopic Plasmodium malariae infection was found in 1.3% of participants, while sub-microscopic studies detected a prevalence of 14.9% for P. malariae and 5.3% for Plasmodium ovale. The rate of co-infection of P. malariae or P. ovale with P. falciparum was 8.3% and 2.6%, respectively. Higher rates of sub-microscopic infection were reported for the urban area without seasonal fluctuation. In contrast, non-P. falciparum species infection was more pronounced in the rural area, with the associated risk of the prevalence of sub-microscopic P. malariae infection increasing during the dry season. Conclusion: There is a need to include non-P. falciparum species in malaria control programs, surveillance measures and eradication strategies in the Republic of the Congo. Graphical Abstract

    Multiple insecticide resistance and Plasmodium infection in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon

    Get PDF
    Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a locality situated 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adults. Bioassays were performed to assess resistance profile to the four insecticides classes. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was the most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having similar sporozoite rate. Both species exhibited high levels of resistance to the pyrethroids, permethrin and deltamethrin (&lt;40% mortality). An. gambiae s.s. was resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively. Furthermore, the high pyrethroid/DDT resistances in An. gambiae corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the significant Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas

    P. falciparum msp1 and msp2 genetic diversity in P. falciparum single and mixed infection with P. malariae among the asymptomatic population in Southern Benin.

    No full text
    Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin

    Surveillance of Plasmodium malariae infection among inhabitants of rural areas in Ouidah-Kpomasse-Tori Bossito health district, Benin.

    No full text
    Among the Plasmodium species that infect humans, P. falciparum has been largely studied in malaria endemic areas. However, P. malariae infection is less documented among the human population. This study aimed to monitor the prevalence and distribution of P. malariae in Southern Benin. A cross-sectional survey was conducted in rural localities in the Ouidah-Kpomasse-Tori Bossito (OKT) health district in Southern Benin from June to October 2019. Socio-demographic data were collected using a questionnaire, while malaria infection data were obtained on the one hand by microscopy diagnosis and, on the other, by nested polymerase chain reaction (PCR). Based on microscopy, the prevalence of P. malariae mono-infection and coinfection of P. falciparum, P. malariae was respectively 2.3% and 1.2% in the OKT health district. This prevalence was higher (P 20 years). The present study revealed that P. malariae increased in the OKT health district with a high prevalence of submicroscopic infection. Since our results provide valuable evidence of increasing P. malariae infection, the National Malaria Control Programs (NMCPs) must consider P. malariae when designing future measures for effective control and malaria treatment. [Abstract copyright: © 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

    Vectorial competence, insecticide resistance in Anopheles funestus and operational implications for malaria vector control strategies in Benin Republic

    No full text
    Abstract The primary reason for the failure of malaria vector control across endemic regions is the widespread insecticide resistance observed in Anopheles vectors. The most dominant African vectors of malaria parasites are Anopheles gambiae and Anopheles funestus mosquitoes. These species often exhibit divergent behaviours and adaptive changes underscoring the importance of deploying active and effective measures in their control. Unlike An. gambiae, An. funestus mosquitoes are poorly studied in Benin Republic. However, recent reports indicated that An. funestus can adapt and colonize various ecological niches owing to its resistance against insecticides and adaptation to changing breeding habitats. Unfortunately, scientific investigations on the contribution of An. funestus to malaria transmission, their susceptibility to insecticide and resistance mechanism developed are currently insufficient for the design of better control strategies. In an attempt to gather valuable information on An. funestus, the present review examines the progress made on this malaria vector species in Benin Republic and highlights future research perspectives on insecticide resistance profiles and related mechanisms, as well as new potential control strategies against An. funestus. Literature analysis revealed that An. funestus is distributed all over the country, although present in low density compared to other dominant malaria vectors. Interestingly, An. funestus is being found in abundance during the dry seasons, suggesting an adaptation to desiccation. Among the An. funestus group, only An. funestus sensu stricto (s.s.) and Anopheles leesoni were found in the country with An. funestus s.s. being the most abundant species. Furthermore, An. funestus s.s. is the only one species in the group contributing to malaria transmission and have adapted biting times that allow them to bite at dawn. In addition, across the country, An. funestus were found resistant to pyrethroid insecticides used for bed nets impregnation and also resistant to bendiocarb which is currently being introduced in indoor residual spraying formulation in malaria endemic regions. All these findings highlight the challenges faced in controlling this malaria vector. Therefore, advancing the knowledge of vectorial competence of An. funestus, understanding the dynamics of insecticide resistance in this malaria vector, and exploring alternative vector control measures, are critical for sustainable malaria control efforts in Benin Republic

    Multiple insecticide resistance and Plasmodium infection in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon

    No full text
    Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms
    corecore