18 research outputs found

    A single brain-derived neurotrophic factor infusion into the dorsomedial prefrontal cortex attenuates cocaine self-administration-induced phosphorylation of synapsin in the nucleus accumbens during early withdrawal

    Get PDF
    BACKGROUND: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. METHODS: In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. RESULTS: Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. CONCLUSIONS: Taken together, these findings demonstrate that brain-derived neurotrophic factor normalizes the cocaine self-administration–induced elevation of p-synapsin in nucleus accumbens that may underlie a disturbance in the probability of neurotransmitter release or represent a compensatory neuroadaptation in response to the hypofunction within the prefrontal cortex-nucleus accumbens pathway during cocaine withdrawal

    Brief maternal separation affects brain α1-adrenoceptors and apoptotic signaling in adult mice

    No full text
    Exposure to adversity during early life is a risk factor for the development of different mood and psychiatric disorders, including depressive-like behaviors. Here, neonatal mice were temporarily but repeatedly (day 1 to day 13) separated from mothers and placed in a testing environment containing a layer of odorless clean bedding (CB). We assessed in adult animals the impact of this early experience on binding sites and mRNA expression of α1-adrenergic receptor subtypes, heat shock proteins (HSPs) and proapoptotic and antiapoptotic members of the Bcl-2 family proteins in different brain regions involved in processing of olfactory information and rewarding stimuli. We found that repeated exposure to CB experience produced anhedonic-like behavior in terms of reduced saccharin intake and α1-adrenoceptor downregulation in piriform and somatosensory cortices, hippocampus, amygdala and discrete thalamic nuclei. We also found a selective decrease of α1B-adrenoceptor binding sites in the cingulate cortex and hippocampus and an increase of hippocampal α1A and α1B receptor, but not of α1D-adrenoceptor, mRNA levels. Moreover, while a significant decrease of antiapoptotic heat shock proteins Hsp72 and Hsp90 was identified in the prefrontal cortex, a parallel increase of antiapoptotic members of Bcl-2 family proteins was found at the hippocampal level. Together, these data provide evidence that the early exposure to CB experience produced enduring downregulation of α1-adrenoceptors in the prefrontal–limbic forebrain/limbic midbrain network, which plays a key role in the processing of olfactory information and reaction to rewarding stimuli. Finally, these data show that CB experience can “prime” the hippocampal circuitry and promote the expression of antiapoptotic factors that can confer potential neuroprotection to subsequent adversity
    corecore