3 research outputs found

    Standard neurophysiological studies and motor evoked potentials in evaluation of traumatic brachial plexus injuries – A brief review of the literature

    Get PDF
    Purpose Traumatic damage to the brachial plexus is associated with temporary or permanent motor and sensory dysfunction of the upper extremity. It may lead to the severe disability of the patient, often excluded from the daily life activity. The pathomechanism of brachial plexus injury usually results from damage detected in structures taking origin in the rupture, stretching or cervical roots avulsion from the spinal cord. Often the complexity of traumatic brachial plexus injury requires a multidisciplinary diagnostic process including clinical evaluation supplemented with clinical neurophysiology methods assessing the functional state of its structures. Their presentation is the primary goal of this paper. Methods The basis for the diagnosis of brachial plexus function is a clinical examination and neurophysiology studies: electroneurography (ENG), needle electromyography (EMG), somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) assessing the function of individual brachial plexus elements. Conclusions The ENG and EMG studies clarify the level of brachial plexus damage, its type and severity, mainly using the Seddon clinical classification. In contrast to F-wave studies, the use of the MEPs in the evaluation of traumatic brachial plexus injury provides valuable information about the function of its proximal part. MEPs study may be an additional diagnostic in confirming the location and extent of the lesion, considering the pathomechanism of the damage. Clinical neurophysiology studies are the basis for determining the appropriate therapeutic program, including choice of conservative or reconstructive surgery which results are verified in prospective studies

    Neurophysiological Evaluation of Neural Transmission in Brachial Plexus Motor Fibers with the Use of Magnetic versus Electrical Stimuli

    No full text
    The anatomical complexity of brachial plexus injury requires specialized in-depth diagnostics. The clinical examination should include clinical neurophysiology tests, especially with reference to the proximal part, with innovative devices used as sources of precise functional diagnostics. However, the principles and clinical usefulness of this technique are not fully described. The aim of this study was to reinvestigate the clinical usefulness of motor evoked potential (MEP) induced by a magnetic field applied over the vertebrae and at Erb’s point to assess the neural transmission of brachial plexus motor fibers. Seventy-five volunteer subjects were randomly chosen to participate in the research. The clinical studies included an evaluation of the upper extremity sensory perception in dermatomes C5–C8 based on von Frey’s tactile monofilament method, and proximal and distal muscle strength by Lovett’s scale. Finally, 42 healthy people met the inclusion criteria. Magnetic and electrical stimuli were applied to assess the motor function of the peripheral nerves of the upper extremity and magnetic stimulus was applied to study the neural transmission from the C5–C8 spinal roots. The parameters of compound muscle action potential (CMAP) recorded during electroneurography and MEP induced by magnetic stimulation were analyzed. Because the conduction parameters for the groups of women and men were comparable, the final statistical analysis covered 84 tests. The parameters of the potentials generated by electrical stimulus were comparable to those of the potentials induced by magnetic impulse at Erb’s point. The amplitude of the CMAP was significantly higher following electrical stimulation than that of the MEP following magnetic stimulation for all the examined nerves, in the range of 3–7%. The differences in the potential latency values evaluated in CMAP and MEP did not exceed 5%. The results show a significantly higher amplitude of potentials after stimulation of the cervical roots compared to potentials evoked at Erb’s point (C5, C6 level). At the C8 level, the amplitude was lower than the potentials evoked at Erb’s point, varying in the range of 9–16%. We conclude that magnetic field stimulation enables the recording of the supramaximal potential, similar to that evoked by an electric impulse, which is a novel result. Both types of excitation can be used interchangeably during an examination, which is essential for clinical application. Magnetic stimulation was painless in comparison with electrical stimulation according to the results of a pain visual analog scale (3 vs. 5.5 on average). MEP studies with advanced sensor technology allow evaluation of the proximal part of the peripheral motor pathway (between the cervical root level and Erb’s point, and via trunks of the brachial plexus to the target muscles) following the application of stimulus over the vertebrae
    corecore