22 research outputs found

    Response of spring wheat (Triticum aestivum) to deficit irrigation management under the semi-arid environment of Egypt: field and modeling study

    Get PDF
    In many areas of the world, water shortages prevail and threaten food production. Deficit irrigation was commonly investigated in dry areas as a precious and sustainable production approach. Using the CropSyst model to simulate the effects of different deficit irrigation treatments could help draw conclusions and save time, effort, and money. Therefore, the aims of this research were (i) to calibrate and validate the CropSyst model for wheat under different sustained and phenological stage-based deficit irrigation treatments, (ii) to simulate the impacts of the latter treatments on limiting wheat yield reduction. Two field experiments were conducted in Nubaria (Egypt), representing an arid environment. They included seven irrigation treatments: (1) 100%, (2) 75%, or (3) 50% of crop evapotranspiration (ETc) during the whole crop cycle; (4) 50% ETc at tillering only, or (5) at booting only, or (6) at grain filling only, or (7) at both tillering and grain filling, with the replenishment of 100% ETc to the treatments (4) to (7) in the remaining phenological stages. The results revealed that phenological stage-based deficit irrigation of wheat resulted in lower yield reduction compared to sustained deficit irrigation treatments, with a 6% yield reduction when 50% ETc was applied at the booting stage. Wheat yield loss was reduced to 4 or 6% when 95 or 90% of ETc were applied, respectively. The CropSyst model accurately simulated wheat grain and total dry matter under deficit irrigation with low RMSE value. In conclusion, the CropSyst model can be reliably used for evaluating the strategy of planned deficit irrigation management in terms of wheat production under the arid environmen

    Comparative Evaluation of Antioxidant Status and Mineral Composition of Diploschistes ocellatus, Calvatia candida (rostk.) Hollós, Battarrea phalloides and Artemisia lerchiana in Conditions of High Soil Salinity

    Get PDF
    Natural reserves play a fundamental role in maintaining flora and fauna biodiversity, but the biochemical characteristics of such ecosystems have been studied in an extremely fragmentary way. For the first time, mineral composition and antioxidant status of three systematic groups of organisms, lichens (Diplischistes ocellatus), mushrooms (Calvatia candida and Battarrea phalloides) and wormwood (Artemisia lerchiana) have been described at the territory of Bogdinsko-Baskunchak Nature Reserve (Astrakhan region, Russia), characterized by high salinity and solar radiation, and water deficiency. Through ICP-MS, it was determined that scale lichen D. ocellatus accumulated up to 10–15% Ca, 0.5% Fe, 15 mg kg−1 d.w. iodine (I), 54.5 mg kg−1 Cr. Battarrea phalloides demonstrated anomalously high concentrations of B, Cu, Fe, Mn Se, Zn, Sr and low Na levels, contrary to Calvatia candida mushrooms accumulating up to 10,850 mg kg−1 Na and only 3 mg kg−1 Sr. The peculiarity of A. lerchiana plants was the high accumulation of B (22.23 mg kg−1 d.w.), Mn (57.48 mg kg−1 d.w.), and antioxidants (total antioxidant activity: 68.6 mg GAE g−1 d.w.; polyphenols: 21.0 mg GAE g−1 d.w.; and proline: 5.45 mg g−1 d.w.). Diploschistes ocellatus and Calvatia candida demonstrated the lowest antioxidant status: 3.6–3.8 mg GAE g−1 d.w. total antioxidant activity, 1.73–2.10 mg GAE g−1 d.w. polyphenols and 2.0–5.3 mg g−1 d.w. proline. Overall, according to the elemental analysis of lichen from Baskunchak Nature Reserve compared to the Southern Crimean seashore, the vicinity of Baskunchak Salty Lake elicited increased environmental levels of Cr, Si, Li, Fe, Co, Ni and Ca

    Industrial processing affects product yield and quality of diced tomato

    Get PDF
    The tomato industry has been searching for new genotypes with improved fruit production, both in the field and industrially processed, together with high-quality performance under sustainable management conditions. This research was carried out in Southern Italy with the aim of assessing the effects of industrial processing on the yield and quality of four tomato hybrids grown according to organic farming methods and addressed at dicing. MAX 14111 and HMX 4228 showed the highest values of field and processing yield as well as reduced sugars and fructose. MAX 14111 had the highest values of total solids and soluble solids, titratable acidity, fiber, energetic value, polyphenols, and also rutin, though not significantly different from Impact. HMX 4228 performed best in terms of sugar ratio, color and naringenin. Concerning the diced products, the sensorial qualities of the four hybrids differed significantly. Total polyphenols, naringenin and rutin in the tomato fruits were higher in the processed than in the raw product. The appreciable fruit yield and quality resulting from both field and processing phase represent a promising perspective for identifying improved tomato genotypes addressed at dicing

    Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato

    Get PDF
    Tomato is considered the most important vegetable crop worldwide. Improving the nutritional value of fruits must be based on sustainable production in terms of varieties and fertilization management. This study aimed to improve the nutritional value (total soluble solids, acidity, lycopene, β-carotene, polyphenols, macro and microelements) of two tomato varieties (‘Cristal’ and ‘Siriana’) under three fertilization types (NPK chemical fertilizer, chicken manure and biological fertilizer with microorganisms) for the greenhouse. Primary metabolism compounds do not vary significantly according to the type of fertilizer used. The results for the antioxidant compounds showed a better effect of biological fertilization compared to chemical fertilizer and control unfertilized. Thus, the antioxidant activity was improved by 28% compared to chemical fertilization, the lycopene content by 36% and β-carotene by 96%, respectively. The tomato fruits from the local cultivar (‘Siriana’) are richer in nutritional compounds such as rutin, regardless of the type of fertilization, which denotes a good ability to adapt to crop conditions. Tomato cultivars reacted positively to microbiological fertilization compared to chemical, thus producing nutritious fruits under sustainable management. Tomato fruits were richer in the quality of microelement contents

    Enhancing the nutritional value of sweet pepper through sustainable fertilization management

    Get PDF
    IntroductionThe need for healthy foods has become a major concern in our modern world, as the global population continues to grow and environmental challenges intensify. In response to these challenges, researchers have started to explore a range of sustainable solutions, including organic farming practices, precision agriculture, and the development and testing of innovative biofertilizers. Consistent with these ideas come the aim of this study, which sets out to give new insights into the cultivation of two sweet pepper cultivars with economic and nutritional importance in Romania.MethodsTwo sweet pepper cultivars (Blancina and Brillant), chemically (Nutrifine®), organically (Orgevit®) and biologically (Micoseed®) fertilized were cultivated over the course of two years (2019 and 2020), between April and October, in high-tunnel, by following a split-plot design with three replications. Production parameters (number of fruits, fruit weight, yield), proximate composition (water content, dry matter, total soluble solids, acidity, ash), the content of phytonutrients (polyphenols, lycopene, β-carotene, antioxidant activity), phytochemical composition (phenolic compounds) and minerals (macro- and micro-elements) were analyzed in order to determine the impact of fertilization on the quality of sweet peppers.ResultsThe results showed that the biological and organic fertilizations had a significant positive impact on most of the parameters analyzed, starting with yield and continuing with acidity, phytonutrient content (total phenolic content, lycopene, β-carotene), antioxidant activity and phytochemical composition (chlorogenic acid, p-coumaric acid, quercetin and isoquercetin). Only in the case of mineral content, the chemical treatment gave better results compared with the organic and biological fertilizers.ConclusionOverall, this study provides valuable information on the potential of organic and biological fertilizers to enhance the nutritional value of sweet peppers from Blancina F1 and Brillant F1 cultivars, paving the way for subsequent research aimed at achieving superior quality and increased yields

    <i>Serendipita indica</i>—A Review from Agricultural Point of View

    No full text
    Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica’s modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment

    The Potential Role of Cobalt and/or Organic Fertilizers in Improving the Growth, Yield, and Nutritional Composition of Moringa oleifera

    No full text
    In sustainable farming, the use of organic fertilizers is a costly but environmentally-oriented type of soil&ndash;crop system management. Among essential microelements, cobalt (Co) deficiency commonly occurs in arid and semi-arid climatic regions suitable for the growing of moringa (Moringa oleifera Lam), an economically important, multipurpose tree. Therefore, in this study, two pot experiments were conducted to identify the interaction effects of Co and organic fertilizers in modifying the growth, yield, and nutritional composition of moringa. Each experiment consisted of 21 treatments as combinations of seven concentrations of Co (0.0, 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 mg L&minus;1) and three organic fertilizers (chicken manure, CM; farmyard manure, FYM; and compost, Comp). Co, at 7.5&ndash;12.5 mg L&minus;1, in combination with CM, significantly increased the height, leaf number, leaf area, and dry weight of plants, as well as N, P, K, Zn, Cu, protein, total carbohydrate, total soluble solids, total phenolics, carotenoids, and vitamin C in leaves. Co was positively correlated with N, P, K, and the dry weight content in moringa leaves, and this synergistic interaction may underpin the remaining parameters enhanced by Co. The cobalt effect was dose-dependent, so the improved growth, yield, and nutritional composition of moringa can be managed through a proper Co dose in combination with organic fertilizer. Co and organic fertilization could be a promising strategy for improving moringa plant productivity and its biological value in conditions of sandy soils and Co deficiency

    Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae

    No full text
    Endophytes are isolated from every plant species investigated to date, so the metabolome coevolution has been aecting the plants’ (microbiota) ethnobotanic, especially therapeutic, usage. Asteraceae fulfill the rationale for plant selection to isolate endophytes since most of the species of this family have a long tradition of healing usage, confirmed by modern pharmacognosy. The present review compiles recent references on the endophyteAsteraceae spp. interactions, targeting the secondary metabolites profile as created by both members of this biological system. Endophyte fungi associated with Asteraceae have been collected globally, however, dominant taxa that produce bioactive compounds were specific for the plant populations of dierent geographic origins. Endophytic fungi richness within the host plant and the biological activity were positively associated. Moreover, the pharmacological action was linked to the plant part, so dierential forms of biological interactions in roots, stem, leaves, inflorescences were developed between endophytic fungi and host plants. The comparative analysis of the Asteraceae host and/or fungal endophyte therapeutic activity showed similarities that need a future explanation on the metabolome level

    Screening of Chilli Pepper Genotypes as a Source of Capsaicinoids and Antioxidants under Conditions of Simulated Drought Stress

    No full text
    In many regions of the world, the production of vegetable crops is limited by a deepening water crisis. Drought stress affects productivity and the chemical composition of crops. The variability of drought tolerance between species and cultivars of economically important crops, such as pepper (Capsicum species), requires specific investigations to understand the physiological and biochemical responses to the aftermath of drought. The fruits and leaves of four chilli pepper cultivars were investigated to elucidate the fruits&rsquo; pungency (Scoville Heat Units, SHU), ascorbic acid content, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, polyphenol content, membrane lipid peroxidation and key protective antioxidant enzyme activity under drought stress (18&ndash;28% volumetric water content) as compared to the control (35&ndash;60%). Drought increased the chilli pepper fruits&rsquo; pungency expressed in Scoville Heat Units (SHU) as well as ascorbic acid content, but this relationship was also dependent on genotype and stress duration. &lsquo;Jolokia&rsquo; was marked as most sensitive to drought by increasing content of capsaicinoids and DPPHË™ scavenging activity under stress conditions. Capsaicinoids and Ascorbic acid (AsA) greatly influenced the antioxidant activity of highly pungent chilli pepper fruits, although total phenols played a significant role in the mildly pungent genotypes. Generally, the activities of antioxidant enzymes increased under drought in chilli pepper leaves and fruits, although the intensity of the reaction varied among the cultivars used in the current research. All the investigated biochemical parameters were involved in the drought response of chilli pepper plants, but their significance and effectiveness were highly cultivar-dependent

    Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops

    No full text
    Amaryllidaceae family comprises many crops of high market potential for the food and pharmaceutical industries. Nowadays, the utilization of plants as a source of bioactive compounds requires the plant/endophytic microbiome interactions, which affect all aspects of crop&rsquo;s quantity and quality. This review highlights the taxonomy, ecology, and bioactive chemicals synthesized by endophytic fungi isolated from plants of the Amaryllidaceae family with a focus on the detection of pharmaceutically valuable plant and fungi constituents. The fungal microbiome of Amaryllidaceae is species- and tissue-dependent, although dominating endophytes are ubiquitous and isolated worldwide from taxonomically different hosts. Root sections showed higher colonization as compared to bulbs and leaves through the adaptation of endophytic fungi to particular morphological and physiological conditions of the plant tissues. Fungal endophytes associated with Amaryllidaceae plants are a natural source of ecofriendly bioagents of unique activities, with special regard to those associated with Amarylloidae subfamily. The latter may be exploited as stimuli of alkaloids production in host tissues or can be used as a source of these compounds through in vitro synthesis. Endophytes also showed antagonistic potential against fungal, bacterial, and viral plant diseases and may find an application as alternatives to synthetic pesticides. Although Amaryllidaceae crops are cultivated worldwide and have great economic importance, the knowledge on their endophytic fungal communities and their biochemical potential has been neglected so far
    corecore